The structural feature shown on a remote sensing image is a synthetic result ofcombination of the deformations produced during the entire geological history of an area.Therefore, the respective tectonic stress field o...The structural feature shown on a remote sensing image is a synthetic result ofcombination of the deformations produced during the entire geological history of an area.Therefore, the respective tectonic stress field of each of the different stages in the complexdeformation of an area can be reconstructed in three steps: (1) geological structures formed atdifferent times are distinguished in remote sensing image interpretation; (2) structuraldeformation fields at different stages are determined by analyzing relationships betweenmicrostructures (joints and fractures) and the related structures (folds and faults); and (3)tectonic stress fields at different stages are respectively recovered through a study of the featuresof structural deformation fields in different periods. Circular structures and related circlular and radial joints are correlated in space to con-cealed structural rises. The authors propose a new method for establishing a natural model ofthe concealed structural rises and calculating the tectonic stress field by using quantitative dataof the remote sensing information of circular structures and related linear structures.展开更多
XML data can be represented by a tree or graph and the query processing for XML data requires the structural information among nodes. Designing an efficient labeling scheme for the nodes of Order-Sensitive XML trees i...XML data can be represented by a tree or graph and the query processing for XML data requires the structural information among nodes. Designing an efficient labeling scheme for the nodes of Order-Sensitive XML trees is one of the important methods to obtain the excellent management of XML data. Previous labeling schemes such as region and prefix often sacrifice updating performance and suffer increasing labeling space when inserting new nodes. To overcome these limitations, in this paper we propose a new labeling idea of separating structure from order. According to the proposed idea, a novel Prime-based Middle Fraction Labeling Scheme(PMFLS) is designed accordingly, in which a series of algorithms are proposed to obtain the structural relationships among nodes and to support updates. PMFLS combines the advantages of both prefix and region schemes in which the structural information and sequential information are separately expressed. PMFLS also supports Order-Sensitive updates without relabeling or recalculation, and its labeling space is stable. Experiments and analysis on several benchmarks are conducted and the results show that PMFLS is efficient in handling updates and also significantly improves the performance of the query processing with good scalability.展开更多
Through comparing the measured data of dynamic strains due to loading and temperature by the stain gauge and temperature sensor at the same location,the information in the strain data was divided into three parts in t...Through comparing the measured data of dynamic strains due to loading and temperature by the stain gauge and temperature sensor at the same location,the information in the strain data was divided into three parts in the frequency domain by using the defined index named power spectral density(PSD)-ratio index.The three parts are dominated respectively by temperature varying,stresses,and noises and thus can be distinguished from the determined the separatrix frequencies.Also,a simple algorithm was developed to separate the three types of information and to extract the strain caused mainly by structural stresses.As an application of the proposed method,the effect of strain deformation and noises on the fatigue assessment was investigated based on the separated data.The results show that,the determined values of separatrix frequencies are valuable for the monitoring data from other bridges.The algorithm is a multiresolution and hierarchical method,which has been validated as a simple and effective method for data analyses,and is suitable for the compression and preprocessing of the great amount monitoring data and easy to be integrated into the structural health monitoring(SHM)soft system.The strain due to temperature varying attributes a little to the errors of fatigue assessment;however,the noises or random disturbance existed in the monitoring data have much responsibility for the errors,and the main reason is that the random disturbance shifts the real strain/stress amplitude picked up by real structural stress or strain.展开更多
基金This study was sponsored by The Open Research Laboratory of Quantitative Prediction,Exploration and Assessment of Mineral Resources,MGMR,China.
文摘The structural feature shown on a remote sensing image is a synthetic result ofcombination of the deformations produced during the entire geological history of an area.Therefore, the respective tectonic stress field of each of the different stages in the complexdeformation of an area can be reconstructed in three steps: (1) geological structures formed atdifferent times are distinguished in remote sensing image interpretation; (2) structuraldeformation fields at different stages are determined by analyzing relationships betweenmicrostructures (joints and fractures) and the related structures (folds and faults); and (3)tectonic stress fields at different stages are respectively recovered through a study of the featuresof structural deformation fields in different periods. Circular structures and related circlular and radial joints are correlated in space to con-cealed structural rises. The authors propose a new method for establishing a natural model ofthe concealed structural rises and calculating the tectonic stress field by using quantitative dataof the remote sensing information of circular structures and related linear structures.
基金supported by the National Science Foundation of China(Grant No.61272067,61370229)the National Key Technology R&D Program of China(Grant No.2012BAH27F05,2013BAH72B01)+1 种基金the National High Technology R&D Program of China(Grant No.2013AA01A212)the S&T Projects of Guangdong Province(Grant No.2016B010109008,2014B010117007,2015A030401087,2015B010109003,2015B010110002)
文摘XML data can be represented by a tree or graph and the query processing for XML data requires the structural information among nodes. Designing an efficient labeling scheme for the nodes of Order-Sensitive XML trees is one of the important methods to obtain the excellent management of XML data. Previous labeling schemes such as region and prefix often sacrifice updating performance and suffer increasing labeling space when inserting new nodes. To overcome these limitations, in this paper we propose a new labeling idea of separating structure from order. According to the proposed idea, a novel Prime-based Middle Fraction Labeling Scheme(PMFLS) is designed accordingly, in which a series of algorithms are proposed to obtain the structural relationships among nodes and to support updates. PMFLS combines the advantages of both prefix and region schemes in which the structural information and sequential information are separately expressed. PMFLS also supports Order-Sensitive updates without relabeling or recalculation, and its labeling space is stable. Experiments and analysis on several benchmarks are conducted and the results show that PMFLS is efficient in handling updates and also significantly improves the performance of the query processing with good scalability.
文摘Through comparing the measured data of dynamic strains due to loading and temperature by the stain gauge and temperature sensor at the same location,the information in the strain data was divided into three parts in the frequency domain by using the defined index named power spectral density(PSD)-ratio index.The three parts are dominated respectively by temperature varying,stresses,and noises and thus can be distinguished from the determined the separatrix frequencies.Also,a simple algorithm was developed to separate the three types of information and to extract the strain caused mainly by structural stresses.As an application of the proposed method,the effect of strain deformation and noises on the fatigue assessment was investigated based on the separated data.The results show that,the determined values of separatrix frequencies are valuable for the monitoring data from other bridges.The algorithm is a multiresolution and hierarchical method,which has been validated as a simple and effective method for data analyses,and is suitable for the compression and preprocessing of the great amount monitoring data and easy to be integrated into the structural health monitoring(SHM)soft system.The strain due to temperature varying attributes a little to the errors of fatigue assessment;however,the noises or random disturbance existed in the monitoring data have much responsibility for the errors,and the main reason is that the random disturbance shifts the real strain/stress amplitude picked up by real structural stress or strain.