Shannon’s information measure is a crucial concept in Information Theory. And the research, for the mathematics structure of Shannon’s information measure, is to recognize the essence of information measure. The lin...Shannon’s information measure is a crucial concept in Information Theory. And the research, for the mathematics structure of Shannon’s information measure, is to recognize the essence of information measure. The linear relation between Shannon’s information measures and some signed measure space by using the formal symbols substitution rule is discussed. Furthermore, the coefficient matrix recurrent formula of the linear relation is obtained. Then the coefficient matrix is proved to be invertible via mathematical induction. This shows that the linear relation is one-to-one, and according to this, it can be concluded that a compact space can be generated from Shannon’s information measures.展开更多
A poorly calibrated model undermines confidence in the effectiveness of building energy simulation, impeding the widespread application of advanced energy conservation measures (ECMs). Striking a balance between infor...A poorly calibrated model undermines confidence in the effectiveness of building energy simulation, impeding the widespread application of advanced energy conservation measures (ECMs). Striking a balance between information-gathering efforts and achieving sufficient model credibility is crucial but often obscured by ambiguities. To address this gap, we model and calibrate a test bed with different levels of information (LOI). Beginning with an initial model based on building geometry (LOI 1), we progressively introduce additional information, including nameplate information (LOI 2), envelope conductivity (LOI 3), zone infiltration rate (LOI 4), AHU fan power (LOI 5), and HVAC data (LOI 6). The models are evaluated for accuracy, consistency, and the robustness of their predictions. Our results indicate that adding more information for calibration leads to improved data fit. However, this improvement is not uniform across all observed outputs due to identifiability issues. Furthermore, for energy-saving analysis, adding more information can significantly affect the projected energy savings by up to two times. Nevertheless, for ECM ranking, models that did not meet ASHRAE 14 accuracy thresholds can yield correct retrofit decisions. These findings underscore equifinality in modeling complex building systems. Clearly, predictive accuracy is not synonymous with model credibility. Therefore, to balance efforts in information-gathering and model reliability, it is crucial to (1) determine the minimum level of information required for calibration compatible with its intended purpose and (2) calibrate models with information closely linked to all outputs of interest, particularly when simultaneous accuracy for multiple outputs is necessary.展开更多
Two dynamic grey models DGM (1, 1) for the verification cycle and the lifecycle of measuring instrument based on time sequence and frequency sequence were set up, according to the statistical feature of examination da...Two dynamic grey models DGM (1, 1) for the verification cycle and the lifecycle of measuring instrument based on time sequence and frequency sequence were set up, according to the statistical feature of examination data and weighting method. By a specific case, i.e. vernier caliper, it is proved that the fit precision and forecast precision of the models are much higher, the cycles are obviously different under different working conditions, and the forecast result of the frequency sequence model is better than that of the time sequence model. Combining dynamic grey model and auto-manufacturing case the controlling and information subsystems of verification cycle and the lifecycle based on information integration, multi-sensor controlling and management controlling were given. The models can be used in production process to help enterprise reduce error, cost and flaw.展开更多
A black hole is essentially a relativistic as well as a quantum object. Therefore the information paradox of black holes is a consequence of the clash between these two most fundamental theories of modern physics. It ...A black hole is essentially a relativistic as well as a quantum object. Therefore the information paradox of black holes is a consequence of the clash between these two most fundamental theories of modern physics. It is logical to conclude that a resolution of the problem requires some form of a quantum gravity theory. The present work proposes such a resolution using set theory and pointless spacetime geometry.展开更多
This article deals with the problem of calculating the comparative uncertainty of the main variable in the model of the studied physical phenomenon, which depends on a qualitative and quantitative set of variables. Th...This article deals with the problem of calculating the comparative uncertainty of the main variable in the model of the studied physical phenomenon, which depends on a qualitative and quantitative set of variables. The choice of variables is determined by preliminary information available to the observer and dependent on his knowledge, experience and intuition. The finite value of the amount of information available to the researcher leads to the inevitable aberration of the observed object. This causes the existence of an unremovable and intractable processing by any statistical methods, a comparative (respectively, relative) uncertainty of the model. The goal is to present a theoretical justification for the existence of this uncertainty and proposes a procedure for its calculation. The practical application of the informational method for choosing the preferred model for the Einstein formula and for calculating the speed of sound is demonstrated.展开更多
This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered ...This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered LRV has three rolling stocks and each one equips three sensors for monitoring the suspension system. A Kalman filter is applied to generate the residuals for fault diagnosis. For the purpose of fault isolation, a fault feature database is built in advance. The Eros and the norm distance between the fault feature of the new occurred fault and the one in the feature database are applied to measure the similarity of the feature which is the basis for the basic belief assignment to the fault, respectively. After the basic belief assignments are obtained, they are fused by using the D-S evidence theory. The fusion of the basic belief assignments increases the isolation accuracy significantly. The efficiency of the proposed method is demonstrated by two case studies.展开更多
It is well known that a suggestive connection links Schr?dinger’s equation (SE) and the information-optimizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the existence...It is well known that a suggestive connection links Schr?dinger’s equation (SE) and the information-optimizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the existence of a Legendre transform structure underlying the SE. Such a structure leads to a first order partial differential equation (PDE) for the SE’s eigenvalues from which a complete solution for them can be obtained. We test this theory with regards to anharmonic oscillators (AHO). AHO pose a long-standing problem and received intense attention motivated by problems in quantum field theory and molecular physics. By appeal to the Cramer Rao bound we are able to Fisher-infer the energy eigenvalues without explicitly solving Schr?dinger’s equation. Remarkably enough, and in contrast with standard variational approaches, our present procedure does not involve free fitting parameters.展开更多
基金the Science and Technology Research Project of Education Department, Heilongjiang Province (Grant No.11513095)the Science andTechnology Foundation of Heilongjiang Institute of Science and Technology(Grant No.04 -25).
文摘Shannon’s information measure is a crucial concept in Information Theory. And the research, for the mathematics structure of Shannon’s information measure, is to recognize the essence of information measure. The linear relation between Shannon’s information measures and some signed measure space by using the formal symbols substitution rule is discussed. Furthermore, the coefficient matrix recurrent formula of the linear relation is obtained. Then the coefficient matrix is proved to be invertible via mathematical induction. This shows that the linear relation is one-to-one, and according to this, it can be concluded that a compact space can be generated from Shannon’s information measures.
基金This research project is supported by the National Research Foundation,Singapore,and Ministry of National Development,Singapore under its Cities of Tomorrow R&D Programme(CoT Award COT-V4-2020-5)the National Research Foundation,Prime Minister’s Office,Singapore under its Campus for Research Excellence and Technological Enterprise(CREATE)program through a grant to the Berkeley Education Alliance for Research in Singapore(BEARS)for the Singapore-Berkeley Building Efficiency and Sustainability in the Tropics(SinBerBEST)Program.
文摘A poorly calibrated model undermines confidence in the effectiveness of building energy simulation, impeding the widespread application of advanced energy conservation measures (ECMs). Striking a balance between information-gathering efforts and achieving sufficient model credibility is crucial but often obscured by ambiguities. To address this gap, we model and calibrate a test bed with different levels of information (LOI). Beginning with an initial model based on building geometry (LOI 1), we progressively introduce additional information, including nameplate information (LOI 2), envelope conductivity (LOI 3), zone infiltration rate (LOI 4), AHU fan power (LOI 5), and HVAC data (LOI 6). The models are evaluated for accuracy, consistency, and the robustness of their predictions. Our results indicate that adding more information for calibration leads to improved data fit. However, this improvement is not uniform across all observed outputs due to identifiability issues. Furthermore, for energy-saving analysis, adding more information can significantly affect the projected energy savings by up to two times. Nevertheless, for ECM ranking, models that did not meet ASHRAE 14 accuracy thresholds can yield correct retrofit decisions. These findings underscore equifinality in modeling complex building systems. Clearly, predictive accuracy is not synonymous with model credibility. Therefore, to balance efforts in information-gathering and model reliability, it is crucial to (1) determine the minimum level of information required for calibration compatible with its intended purpose and (2) calibrate models with information closely linked to all outputs of interest, particularly when simultaneous accuracy for multiple outputs is necessary.
文摘Two dynamic grey models DGM (1, 1) for the verification cycle and the lifecycle of measuring instrument based on time sequence and frequency sequence were set up, according to the statistical feature of examination data and weighting method. By a specific case, i.e. vernier caliper, it is proved that the fit precision and forecast precision of the models are much higher, the cycles are obviously different under different working conditions, and the forecast result of the frequency sequence model is better than that of the time sequence model. Combining dynamic grey model and auto-manufacturing case the controlling and information subsystems of verification cycle and the lifecycle based on information integration, multi-sensor controlling and management controlling were given. The models can be used in production process to help enterprise reduce error, cost and flaw.
文摘A black hole is essentially a relativistic as well as a quantum object. Therefore the information paradox of black holes is a consequence of the clash between these two most fundamental theories of modern physics. It is logical to conclude that a resolution of the problem requires some form of a quantum gravity theory. The present work proposes such a resolution using set theory and pointless spacetime geometry.
文摘This article deals with the problem of calculating the comparative uncertainty of the main variable in the model of the studied physical phenomenon, which depends on a qualitative and quantitative set of variables. The choice of variables is determined by preliminary information available to the observer and dependent on his knowledge, experience and intuition. The finite value of the amount of information available to the researcher leads to the inevitable aberration of the observed object. This causes the existence of an unremovable and intractable processing by any statistical methods, a comparative (respectively, relative) uncertainty of the model. The goal is to present a theoretical justification for the existence of this uncertainty and proposes a procedure for its calculation. The practical application of the informational method for choosing the preferred model for the Einstein formula and for calculating the speed of sound is demonstrated.
文摘This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered LRV has three rolling stocks and each one equips three sensors for monitoring the suspension system. A Kalman filter is applied to generate the residuals for fault diagnosis. For the purpose of fault isolation, a fault feature database is built in advance. The Eros and the norm distance between the fault feature of the new occurred fault and the one in the feature database are applied to measure the similarity of the feature which is the basis for the basic belief assignment to the fault, respectively. After the basic belief assignments are obtained, they are fused by using the D-S evidence theory. The fusion of the basic belief assignments increases the isolation accuracy significantly. The efficiency of the proposed method is demonstrated by two case studies.
文摘It is well known that a suggestive connection links Schr?dinger’s equation (SE) and the information-optimizing principle based on Fisher’s information measure (FIM). It has been shown that this entails the existence of a Legendre transform structure underlying the SE. Such a structure leads to a first order partial differential equation (PDE) for the SE’s eigenvalues from which a complete solution for them can be obtained. We test this theory with regards to anharmonic oscillators (AHO). AHO pose a long-standing problem and received intense attention motivated by problems in quantum field theory and molecular physics. By appeal to the Cramer Rao bound we are able to Fisher-infer the energy eigenvalues without explicitly solving Schr?dinger’s equation. Remarkably enough, and in contrast with standard variational approaches, our present procedure does not involve free fitting parameters.