期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Supercritical water syntheses of transition metal-doped CeO_2 nano-catalysts for selective catalytic reduction of NO by CO:An in situ diffuse reflectance Fourier transform infrared spectroscopy study 被引量:12
1
作者 Xiaoxia Dai Weiyu Jiang +4 位作者 Wanglong Wang Xiaole Weng Yuan Shang Yehui Xue Zhongbiao Wu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期728-735,共8页
In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice... In the present study,we synthesized CeO2 catalysts doped with various transition metals(M=Co,Fe,or Cu)using a supercritical water hydrothermal route,which led to the incorporation of the metal ions in the CeO2 lattice,forming solid solutions.The catalysts were then used for the selective catalytic reduction(SCR)of NO by CO.The Cu‐doped catalyst exhibited the highest SCR activity;it had a T50(i.e.,50%NO conversion)of only 83°C and a T90(i.e.,90%NO conversion)of 126°C.Such an activity was also higher than in many state‐of‐the‐art catalysts.In situ diffuse reflectance Fourier transform infrared spectroscopy suggested that the MOx‐CeO2 catalysts(M=Co and Fe)mainly followed an Eley‐Rideal reaction mechanism for CO‐SCR.In contrast,a Langmuir‐Hinshelwood SCR reaction mechanism occurred in CuO‐CeO2 owing to the presence of Cu+species,which ensured effective adsorption of CO.This explains why CuO‐CeO2 exhibited the highest activity with regard to the SCR of NO by CO. 展开更多
关键词 Supercritical water Nitrogen oxides CO Selective catalytic reduction Diffuse reflectance fourier transform infrared spectroscopy CEO2
下载PDF
Effects of Activation Atmospheres on Structure and Activity of Mo-based Catalyst for Synthesis of Higher Alcohols
2
作者 周纪龙 谢威 +4 位作者 孙松 姬丽丽 郑黎荣 高琛 鲍骏 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第4期467-473,I0002,共8页
Activated carbon supported Mo-based catalysts were prepared and reduced under different activation atmospheres, including pure H2, syngas (H2/CO=2/1), and pure CO. The cat- alysts structures were characterized by X-... Activated carbon supported Mo-based catalysts were prepared and reduced under different activation atmospheres, including pure H2, syngas (H2/CO=2/1), and pure CO. The cat- alysts structures were characterized by X-ray diffraction , X-ray absorption fine structure, and in situ diffuse reflectance infrared Fourier transform spectroscopy. The catalytic per- formance for the higher alcohol synthesis from syngas was tested. The pure H2 treatment showed a high reduction capacity. The presence of a large amount of metallic CoO and low valence state Mo^φ+ (0〈φ〈2) on the surface suggested a super activity for the CO dissoci- ation and hydrogenation, which promoted hydrocarbons formation and reduced the alcohol selectivity. In contrast, the pure CO-reduced catalyst had a low reduction degree. The Mo and Co species at the catalyst mainly existed in the form of Mo^4+ and Co^2+. The syngas- reduced catalyst showed the highest activity and selectivity for the higher alcohols synthesis. We suggest that the syngas treatment had an appropriate reduction capacity that is between those of pure H2 and pure CO and led to the coexistence of multivalent Co species as well as the enrichment of Mo~+ on the catalyst's surface. The synergistic effects between these active species provided a better cooperativity and equilibrium between the CO dissociation, hydrogenation and CO insertion and thus contributed beneficially to the formation of higher alcohols. 展开更多
关键词 Higher alcohol synthesis Activation mechanism in situ diffuse reflectance infrared fourier transform spectroscopy Mo-based catalyst SYNGAS
下载PDF
Improving visible-light-driven photocatalytic NO oxidation over BiOBr nanoplates through tunable oxygen vacancies 被引量:4
3
作者 Jiazhen Liao Lvcun Chen +4 位作者 Minglu Sun Ben Lei Xiaolan Zeng Yanjuan Sun Fan Dong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期779-789,共11页
In this work,a series of BiOBr nanoplates with oxygen vacancies(OVs)were synthesized by a solvothermal method using a water/ethylene glycol solution.The number of OVs and facets of BiOBr were tuned by changing the wat... In this work,a series of BiOBr nanoplates with oxygen vacancies(OVs)were synthesized by a solvothermal method using a water/ethylene glycol solution.The number of OVs and facets of BiOBr were tuned by changing the water/ethylene glycol ratio.Although the role of OVs in photocatalysis has been investigated,the underlying mechanisms of charge transfer and reactant activation remain unknown.To unravel the effect of OVs on the reactant activation and photocatalytic NO oxidation process,in situ diffuse reflectance infrared Fourier transform spectroscopy,so‐called DRIFTS,and theoretical calculations were performed and their results combined.The photocatalytic efficiency of the as‐prepared BiOBr was significantly increased by increasing the amount of OVs.The oxygen vacancies had several effects on the photocatalysts,including the introduction of intermediate energy levels that enhanced light absorption,promoted electron transfer,acted as active sites for catalytic reaction and the activation of oxygen molecules,and facilitated the conversion of the intermediate products to the final product,thus increasing the overall visible light photocatalysis efficiency.The present work provides new insights into the understanding of the role of OVs in photocatalysts and the mechanism of photocatalytic NO oxidation. 展开更多
关键词 BiOBr nanoplate Oxygen vacancies In situ diffuse reflectance infrared fourier transform spectroscopy Conversion pathway NO oxidation
下载PDF
Visible light-enhanced photothermal CO2 hydrogenation over Pt/Al2O3 catalyst 被引量:4
4
作者 Ziyan Zhao Dmitry EDoronkin +3 位作者 Yinghao Ye Jan-Dierk Grunwaldt Zeai Huang Ying Zhou 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第2期286-293,共8页
Light illumination has been widely used to promote activity and selectivity of traditional thermal catalysts. Nevertheless, the role of light irradiation during catalytic reactions is not well understood. In this work... Light illumination has been widely used to promote activity and selectivity of traditional thermal catalysts. Nevertheless, the role of light irradiation during catalytic reactions is not well understood. In this work, Pt/Al2 O3 prepared by wet impregnation was used for photothermal CO2 hydrogenation, and it showed a photothermal effect. Hence, operando diffuse reflectance infrared Fourier-transform spectroscopy and density functional theory calculations were conducted on Pt/Al2 O3 to gain insights into the reaction mechanism. The results indicated that CO desorption from Pt sites including step sites(Ptstep) or/and terrace site(Ptterrace) is an important step during CO2 hydrogenation to free the active Pt sites. Notably, visible light illumination and temperature affected the CO desorption in different ways. The calculated adsorption energy of CO on Ptstep and Ptterrace sites was-1.24 and-1.43 e V, respectively. Hence, CO is more strongly bound to the Ptstep sites. During heating in the dark, CO preferentially desorbs from the Ptterrace site. However, the additional light irradiation facilitates transfer of CO from the Ptstep to Ptterrace sites and its subsequent desorption from the Ptterrace sites, thus promoting the CO2 hydrogenation. 展开更多
关键词 CO2 hydrogenation Photothermal catalysis PT/AL2O3 Operando diffuse reflectance infrared fourier transform spectroscopy Density functional theory
下载PDF
Facile synthesis of Bi_(12)O_(17)Br_2 and Bi_4O_5Br_2 nanosheets:In situ DRIFTS investigation of photocatalytic NO oxidation conversion pathway 被引量:5
5
作者 Wendong Zhang Xiaoli Liu +2 位作者 Xing’an Dong Fan Dong Yuxin Zhang 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第12期2030-2038,共9页
Bi12O17Br2and Bi4O5Br2visible‐light driven photocatalysts,were respectively fabricated by hydrothermal and room‐temperature deposition methods with the use of BiBr3and NaOH as precursors.Both Bi12O17Br2and Bi4O5Br2w... Bi12O17Br2and Bi4O5Br2visible‐light driven photocatalysts,were respectively fabricated by hydrothermal and room‐temperature deposition methods with the use of BiBr3and NaOH as precursors.Both Bi12O17Br2and Bi4O5Br2were composed of irregular nanosheets.The Bi4O5Br2nanosheets exhibited high and stable visible‐light photocatalytic efficiency for ppb‐level NO removal.The performance of Bi4O5Br2was markedly higher than that of the Bi12O17Br2nanosheets.The hydroxyl radical(?OH)was determined to be the main reactive oxygen species for the photo‐degradation processes of both Bi12O17Br2and Bi4O5Br2.However,in situ diffuse reflectance infrared Fourier transform spectroscopy analysis revealed that Bi12O17Br2and Bi4O5Br2featured different conversion pathways for visible light driven photocatalytic NO oxidation.The excellent photocatalytic activity of Bi4O5Br2resulted from a high surface area and large pore volumes,which facilitated the transport of reactants and intermediate products,and provided more active sites for photochemical reaction.Furthermore,the Bi4O5Br2nanosheets produced more?OH and presented stronger valence band holeoxidation.In addition,the oxygen atoms of NO could insert into oxygen‐vacancies of Bi4O5Br2,whichprovided more active sites for the reaction.This work gives insight into the photocatalytic pollutant‐degradation mechanism of bismuth oxyhalide. 展开更多
关键词 Bi12O17Br2 Bi4O5Br2 In situ diffuse reflectance infrared fourier transform spectroscopy investigation Conversion pathway NO oxidation
下载PDF
Adsorption of NO and NH_3 over CuO/γ-Al_2O_3 catalyst 被引量:1
6
作者 赵清森 孙路石 +3 位作者 刘勇 苏胜 向军 胡松 《Journal of Central South University》 SCIE EI CAS 2011年第6期1883-1890,共8页
The selective catalytic reduction reaction belongs to the gas-solid multiphase reaction, and the adsorption of NH3 and NO on CuO/γ-Al2O3 catalysts plays an important role in the reaction. Performance of the CuO/γ-Al... The selective catalytic reduction reaction belongs to the gas-solid multiphase reaction, and the adsorption of NH3 and NO on CuO/γ-Al2O3 catalysts plays an important role in the reaction. Performance of the CuO/γ-Al2O3 catalysts was explored in a fixed bed adsorption system. The catalysts maintain nearly 100% NO conversion efficiency at 350℃. Comprehensive tests were carried out to study the adsorption behavior of NH3 and NO over the catalysts. The desorption experiments prove that NH3 and NO are adsorbed on CuO/γ-Al2O3 catalysts. The adsorption behaviors of NH3 and NO were also studied with the in-situ diffusion reflectance infrared Fourier transform spectroscopy methods. The results show that NH3 could be strongly adsorbed on the catalysts, resulting in coordinated NH3 and NH4+. NO adsorption leads to the formation of bridging bidentate nitrate, chelating bidentate nitrate, and chelating nitro. The interaction of NH3 and NO molecules with the Cu2+ present on the CAl2O3 (100) surface was investigated by using a periodic density functional theory. The results show that the adsorption of all the molecules on the Cu2+ site is energetically favorable, whereas NO bound is stronger than that of NH3 with the adsorption site, and key information about the structural and energetic properties was also addressed. 展开更多
关键词 CUO/Γ-AL2O3 NH3 NO ADSORPTION diffusion reflectance infrared fourier transform spectroscopy density functionaltheory
下载PDF
Surface Modification of (001) Facets Dominated TiO2 with Ozone for Adsorption and Photocatalytic Degradation of Gaseous Toluene
7
作者 Yue Yang Zhi-yu Wang +5 位作者 Fan Zhang Yi Fan Jing-jing Dong Song Sun Chen Gao Jun Bao 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第5期611-619,共9页
This study investigated the positive effect of surface modification with ozone on the photocatalytic performance of anatase TiO2 with dominated(001) facets for toluene degradation.The performance of photocatalyst wa... This study investigated the positive effect of surface modification with ozone on the photocatalytic performance of anatase TiO2 with dominated(001) facets for toluene degradation.The performance of photocatalyst was tested on a home-made volatile organic compounds degradation system. The ozone modification, toluene adsorption and degradation mechanism were established by a combination of various characterization methods, in situ diffuse reflectance infrared fourier transform spectroscopy, and density functional theory calculation.The surface modification with ozone can significantly enhance the photocatalytic degradation performance for toluene. The abundant unsaturated coordinated 5 c-Ti sites on(001)facets act as the adsorption sites for ozone. The formed Ti–O bonds reacted with H2O to generate a large amount of isolated Ti5 c-OH which act as the adsorption sites for toluene,and thus significantly increase the adsorption capacity for toluene. The outstanding photocatalytic performance of ozone-modified TiO2 is due to its high adsorption ability for toluene and the abundant surface hydroxyl groups, which produce very reactive OH·radicals under irradiation. Furthermore, the O2 generated via ozone dissociation could combine with the photogenerated electrons to form superoxide radicals which are also conductive to the toluene degradation. 展开更多
关键词 Ozone modification (001) Facets Toluene degradation TIO2 In situ diffuse reflectance infrared fourier transform spectroscopy
下载PDF
Electrochemical CO2 Reduction on Pd-Modified Cu Foil
8
作者 Zhi-juan Sun Matthew M.Sartiny +5 位作者 Wei Chen Fan He Jun Cai Xu-xu Ye Jun-ling Lu Yan-xia Chen 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第3期303-310,I0002,共9页
Bimetallic catalysts can improve CO2 reduction efficiency via the combined properties of two metals.CuPd shows enhanced CO2 reduction activity compared to copper alone.Using differential electrochemical mass spectrome... Bimetallic catalysts can improve CO2 reduction efficiency via the combined properties of two metals.CuPd shows enhanced CO2 reduction activity compared to copper alone.Using differential electrochemical mass spectrometry(DEMS)and electrochemical infrared(IR)spectroscopy,volatile products and adsorbed intermediates were measured during CO2 and CO reduction on Cu and CuPd.The IR band corresponding to adsorbed CO appears 300 mV more positive on CuPd than that on Cu,indicating acceleration of CO2 reduction to CO.Electrochemical IR spectroscopy measurements in CO-saturated solutions reveal similar potentials for CO adsorption and CO3^2-desorption on CuPd and Cu,indicating that CO adsorption is controlled by desorption of CO3^2-.DEMS measurements carried out during CO reduction at both electrodes showed that the onset potential for reduction of CO to CH4 and CH3OH on CuPd is about 200 mV more positive than that on Cu.We attribute these improvements to interaction of Cu and Pd,which shifts the d-band center of the Cu sites. 展开更多
关键词 CO2 reduction CH band CuPd activity Differential electrochemical mass spectrometry Attenuated total reflection fourier transform infrared spectroscopy
下载PDF
Large anisotropic negative thermal expansion in Cu-TDPAT metalorganic framework:A combined in situ X-ray diffraction and DRIFTS study 被引量:1
9
作者 Mehrdad Asgari lia Kochetygov +1 位作者 Hassan Abedini Wendy L.Queen 《Nano Research》 SCIE EI CAS CSCD 2021年第2期404-410,共7页
Cu-TDPAT(H_(6)TDPAT=2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine),a stable nanoporous metal-organic framework with rht topology,has sparked broad interest as an adsorbent for several chemical separation proces... Cu-TDPAT(H_(6)TDPAT=2,4,6-tris(3,5-dicarboxylphenylamino)-1,3,5-triazine),a stable nanoporous metal-organic framework with rht topology,has sparked broad interest as an adsorbent for several chemical separation processes.In this work,in situ synchrotron diffraction experiments followed by sequential LeBail refinements reveal that Cu-TDPAT shows unusually large anisotropic negative thermal expansion(NTE).The PASCal crystallography tool,used to analyze the magnitude of the NTE,reveals an average volumetric thermal expansion coefficientαv=-20.3 MK^(-1).This value is significantly higher than the one reported for Cu-BTC(also known as HKUST-1),which contains the same Cu-paddlewheel building unit,αv=-12 MK^(-1).In situ synchrotron single crystal X-ray diffraction and in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)were employed to shed light on the NTE mechanism.Using these two methods,we were able to elucidate the three main structural motions that are responsible for the NTE effect.The more pronounced NTE behavior of Cu-TDPAT is attributed to the lower symmetry combined with the more complex ligand structure when compared to Cu-BTC.The knowledge obtained in this work is important for understanding the behavior of the adsorbent under transient variable temperature conditions in fixed adsorption beds. 展开更多
关键词 negative thermal expansion metal-organic frameworks Cu-TDPAT in situ diffraction in situ diffuse reflectance infrared fourier transform spectroscopy(DRIFTS)
原文传递
Catalytic Combustion of Lean Methane Assisted by Electric Field over Pd/Co_3O_4 Catalysts at Low Temperature 被引量:1
10
作者 LIU Ke LI Ke +4 位作者 XU Dejun LIN He GUAN Bin CHEN Ting HUANG Zhen 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第S1期8-17,共10页
A series of Pd/Co_3O_4 catalysts were prepared by Self-Propagating High-Temperature Synthesis(SHS)method in this study, and electric field was applied for catalytic combustion of lean methane over Pd/Co_3O_4 catalysts... A series of Pd/Co_3O_4 catalysts were prepared by Self-Propagating High-Temperature Synthesis(SHS)method in this study, and electric field was applied for catalytic combustion of lean methane over Pd/Co_3O_4 catalysts at low temperature. When electric field was applied, the catalytic combustion performance of Pd/Co_3O_4 catalysts was greatly improved, and the application of electric field could reduce the load of active element Pd to some extent while maintaining the same efficiency. Based on experimental tests and the analysis results of X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), H2-temperature-programmed reduction(H2-TPR) and in-situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS), the mechanism of catalytic oxidation of CH_4 over Pd/Co_3O_4 catalysts in electric field was proposed. The catalytic combustion of CH_4 occurs only when the temperature is higher than 250?C normally, but when electric field was applied, the whole process of CH_4 oxidation was promoted significantly and the reaction temperature was reduced. Electric field could promote the reduction of the support Co_3O_4 to release the lattice oxygen, resulting in the increase of PdOxand the surface chemisorbed oxygen, which could provide more active sites for the low-temperature oxidation of CH_4. Furthermore, electric field could accelerate the dehydroxylation of CoOOH to further enhance the activity of the catalysts. 展开更多
关键词 electric field methane oxidation Pd/Co_3O_4 catalyst in-situ diffuse reflectance infrared fourier transform spectroscopy(DRIFTS) mechanism
原文传递
Effect of ceria surface facet on stability and reactivity of isolated platinum atoms
11
作者 Bochuan Song Shuxin Si +2 位作者 Asiye Soleymani Yan Xin Helena E.Hagelin-Weaver 《Nano Research》 SCIE EI CSCD 2022年第7期5922-5932,共11页
Well-defined surface structures and uniformity are key factors in exploring structure–activity relationships in heterogeneous catalysts.A modified atomic layer deposition method and three well-defined CeO_(2) nanosha... Well-defined surface structures and uniformity are key factors in exploring structure–activity relationships in heterogeneous catalysts.A modified atomic layer deposition method and three well-defined CeO_(2) nanoshapes,octahedra with(111)surfaces,cubes exposing(100)facets,and rods with(100)and(110)surface facet terminations,were utilized to synthesize ultra-low loading Pt/CeO_(2) catalysts and allow investigations on the influence of ceria surface facet on isolated Pt species under reducing conditions.A mild reduction temperature(150℃)reduces the initial platinum ions present on the surfaces of the ceria support but preserves the isolated Pt atoms on all ceria surface facets.In contrast,a reduction temperature of 350°C,reveals very different interactions between the initial single Pt atoms and the various ceria surface facets,leading to dissimilar and nonuniform Pt ensembles on the three ceria shapes.To isolate facet dependent Pt–CeO_(2) interactions and avoid variations between Pt species,the Pt1/CeO_(2) catalysts after reduction at 150°C were subjected to CO oxidation conditions.The isolated Pt atoms on the CeO_(2) octahedra and cubes are less active in the CO oxidation reaction,compared with Pt on CeO_(2) rods.In the case of Pt on the CeO_(2) octahedra this is due to strongly bound CO blocking active sites together with a stable CeO_(2)(111)surface limiting the oxygen supply from the support.On the CeO_(2) cubes,some Pt is not available for reaction and CO is bound strongly on the available Pt species.In addition,the Pt catalysts supported on the CeO_(2) cubes are not stable with time on stream.The isolated Pt atoms on the CeO_(2) rods are considerably more active under these conditions and this is due to a weaker Pt–CO bond strength and more facile reverse oxygen spillover from the defect-rich(110)surfaces of the rods due to the lower energy of oxygen vacancy formation on this CeO_(2) surface.The Pt supported on the CeO_(2) rods is also remarkably stable with time on stream.This work demonstrates the importance of using ultra-low loadings of active metal and well-defined oxide supports to isolate interactions between single metal atoms and oxide supports and determine the effects of the oxide support surface facet on the active metal at the atomic level. 展开更多
关键词 single atom catalyst CeO_(2)shapes facet effects Pt1/CeO_(2) diffuse reflectance infrared fourier transform spectroscopy(DRIFTS)
原文传递
Study on Oxidation Activity of CuCeZrO_x Doped with K for Diesel Engine Particles in NO/O_2
12
作者 WANG Kexin GUAN Bin +3 位作者 LI Ke ZHAN Rijing LIN He HUANG Zhen 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第S1期18-27,共10页
CuCeZrO_x and KCuCeZrO_x catalysts were synthesized and coated on the blank diesel particulate filter(DPF)substrate and a particulate matter(PM)loading apparatus was used for soot loading.The catalytic performances of... CuCeZrO_x and KCuCeZrO_x catalysts were synthesized and coated on the blank diesel particulate filter(DPF)substrate and a particulate matter(PM)loading apparatus was used for soot loading.The catalytic performances of soot oxidation were evaluated by temperature programmed combustion(TPC)test and characterization tests were conducted to investigate the physicochemical properties of the catalysts.The reaction mechanism in the oxidation process was analyzed with diffuse reflectance infrared Fourier transform spectroscopy.The results demonstrated that CuCeZrO_x catalyst exhibited high activities of soot oxidation at low temperature and the best results have been attained with Cu_(0.9)Ce_(0.05)Zr_(0.05)O_x over which the maximum soot oxidation rate decreased to 410~?C.Characterization tests have shown that catalysts containing 90%Cu have uniformly distributed grains and small particle sizes,which provide excellent oxidation activity by providing more active sites and forming a good bond between the catalyst and the soot.The low-temperature oxidation activity of soot could be further optimized due to the excellent elevated NO’s conversion rate by partially substituting Cu with K.The maximum particle oxidation rate can be easily realized at such a low temperature as 347~?C. 展开更多
关键词 self-propagating high-temperature synthesis(SHS) Mn and Ce substitution low temperature activity N2 selectivity H2O and SO2 poisoning in situ diffused reflectance infrared fourier transform spectroscopy(DRIFTS)
原文传递
The effect of gas phase polydimethylsiloxane surface treatment of metallic aluminum particles: Surface characterization and flow behavior
13
作者 Bellamarie Ludwia Jennifer L. Gray 《Particuology》 SCIE EI CAS CSCD 2017年第1期92-101,共10页
Aluminum particles were exposed to gaseous polydimethylsiloxane (PDMS) to produce a hydropho- bic surface coating for enhanced flow and fluidity. Surface retention of the intact PDMS was confirmed through infrared a... Aluminum particles were exposed to gaseous polydimethylsiloxane (PDMS) to produce a hydropho- bic surface coating for enhanced flow and fluidity. Surface retention of the intact PDMS was confirmed through infrared and X-ray photoelectron spectroscopy. Transmission electron microscopy was used to image cross-sections of the treated particles and energy dispersive spectroscopy element maps demon- strated the presence of a surface layer consisting of silicon and oxygen. Density measurements provided evidence for improvements in the Hausner ratio and Carr index of the PDMS-treated aluminum, indicating a reduction in inter-particulate cohesion through increased bulk density. Stability, compressibility, shear, aeration, and permeability of the particles were assessed by powder rheometer. The compressibility was reduced by approximately 32% following surface treatment, revealing a reduction in void space, while Mohr's circle analysis and shear testing determined that the extrapolated cohesion value was reduced by approximately 53% and the flow factor at 6 kPa was doubled. Aeration testing showed that the air velocity required to obtain a fluidized bed was on the order of 0.35 mm/s for the treated powder, whereas the raw powder could not be uniformly fluidized. PDMS may be a viable option for the large-scale treatment of aluminum powder for flow applications. 展开更多
关键词 Aluminum powder Polydimethylsiloxane X-ray photoelectron spectroscopy Diffuse reflectance infrared fourier transform spectroscopy Flowability FT4 powder rheometer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部