A three-dimensional infrared radiation code for exhaust system was developed by the finite volume method coupled with narrow band k-distribution in non-gray absorbing-emitting media.The final infrared signature had co...A three-dimensional infrared radiation code for exhaust system was developed by the finite volume method coupled with narrow band k-distribution in non-gray absorbing-emitting media.The final infrared signature had considered the atmosphere effect,and the simulation values were favorably consistent with testing ones.The results indicate that the relative errors considering the effect of atmosphere compared with that of the contrary condition reduce by 31%,it shows that when simulating the infrared radiation of the target which is received by the infrared detectors,even the calculation band is in atmospheric windows 3~5 μm,the effect of atmospheric transmission on infrared signature of the target should not be neglected.展开更多
The long-wave infrared band(8–14μm)is essential for several applications,such as infrared detection,radiative cooling,and near-field heat transfer.However,according to Kirchhoff’s law,the intrinsic balance between ...The long-wave infrared band(8–14μm)is essential for several applications,such as infrared detection,radiative cooling,and near-field heat transfer.However,according to Kirchhoff’s law,the intrinsic balance between thermal absorption and emission limits the further improvement of photon energy conversion and thermal management.Thus,breaking Kirchhoff’s balance and achieving nonreciprocal thermal radiation in the long-wave infrared band are necessary.Most existing designs for nonreciprocal thermal emitters rely on grating or photonic crystal structures to achieve nonreciprocal thermal radiation at narrow peaks,which are relatively complex and typically realize bands larger than 14μm.Here,a sandwich structure consisting of an epsilon-nearzero(ENZ)magneto-optical layer(MOL),a dielectric layer(DL),and a metal layer is proposed to achieve a strong nonreciprocal effect in the long-wave infrared band,which is mainly attributed to the strengthening of the asymmetric Berreman mode by the Fabry–Perot cavity.In addition,the impact of the incident angle,DL thickness,and DL refractive index on the nonreciprocal thermal radiation has been investigated.Moreover,by replacing the ENZ MOL with the gradient ENZ MOL,the existence of the DL can further improve the nonreciprocity of the broadband nonreciprocal thermal radiation.The proposed work promotes the development and application of nonreciprocal energy devices.展开更多
A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a...A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.展开更多
文摘A three-dimensional infrared radiation code for exhaust system was developed by the finite volume method coupled with narrow band k-distribution in non-gray absorbing-emitting media.The final infrared signature had considered the atmosphere effect,and the simulation values were favorably consistent with testing ones.The results indicate that the relative errors considering the effect of atmosphere compared with that of the contrary condition reduce by 31%,it shows that when simulating the infrared radiation of the target which is received by the infrared detectors,even the calculation band is in atmospheric windows 3~5 μm,the effect of atmospheric transmission on infrared signature of the target should not be neglected.
基金supported by the National Natural Science Foundation of China(Grant Nos.52211540005 and 52076087)the Natural Science Foundation of Hubei Province(Grant No.2023AFA072)+1 种基金the Open Project Program of Wuhan National Laboratory for Optoelectronics(Grant No.2021WNLOKF004)Wuhan Knowledge Innovation Shuguang Program,and the Fundamental Research Funds for the Central Universities(Grant No.YCJJ20242102).
文摘The long-wave infrared band(8–14μm)is essential for several applications,such as infrared detection,radiative cooling,and near-field heat transfer.However,according to Kirchhoff’s law,the intrinsic balance between thermal absorption and emission limits the further improvement of photon energy conversion and thermal management.Thus,breaking Kirchhoff’s balance and achieving nonreciprocal thermal radiation in the long-wave infrared band are necessary.Most existing designs for nonreciprocal thermal emitters rely on grating or photonic crystal structures to achieve nonreciprocal thermal radiation at narrow peaks,which are relatively complex and typically realize bands larger than 14μm.Here,a sandwich structure consisting of an epsilon-nearzero(ENZ)magneto-optical layer(MOL),a dielectric layer(DL),and a metal layer is proposed to achieve a strong nonreciprocal effect in the long-wave infrared band,which is mainly attributed to the strengthening of the asymmetric Berreman mode by the Fabry–Perot cavity.In addition,the impact of the incident angle,DL thickness,and DL refractive index on the nonreciprocal thermal radiation has been investigated.Moreover,by replacing the ENZ MOL with the gradient ENZ MOL,the existence of the DL can further improve the nonreciprocity of the broadband nonreciprocal thermal radiation.The proposed work promotes the development and application of nonreciprocal energy devices.
文摘A ten-month field research study was meticulously conducted at Robert Moses State Park (RMSP) on the south shore of Long Island, NY. The objective was to determine if aerial phenomena of an unknown nature exist over a coastal location and to characterize their properties and behaviors. Primary and secondary field observation methods were utilized in this data-centric study. Forensic engineering principles and methodologies guided the study. The challenges set forward were object detection, observation, and characterization, where multispectral electro-optical devices and radar were employed due to limited visual acuity and intermittent presentation of the phenomena. The primary means of detection utilized a 3 cm X-band radar operating in two scan geometries, the X- and Y-axis. Multispectral electro-optical devices were utilized as a secondary means of detection and identification. Data was emphasized using HF and LF detectors and spectrum analyzers incorporating EM, ultrasonic, magnetic, and RF field transducers to record spectral data in these domains. Data collection concentrated on characterizing VIS, NIR, SWIR, LWIR, UVA, UVB, UVC, and the higher energy spectral range of ionizing radiation (alpha, beta, gamma, and X-ray) recorded by Geiger-Müller counters as well as special purpose semiconductor diode sensors.