期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Preparation and Characterization of High Infrared Emissivity Mn-doped NCO Spinel Composites 被引量:3
1
作者 邹隽 DONG Shurong +2 位作者 GAO Junhua WANG Hongfu 程旭东 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1265-1270,共6页
NiCr2O4(NCO)spinel composites with different Mn/Ni atomic ratios(Mn/Ni=0.05,0.10,0.15,and 0.20)were synthesized via solid state reaction method.Phase compositions and microstructure of samples were characterized b... NiCr2O4(NCO)spinel composites with different Mn/Ni atomic ratios(Mn/Ni=0.05,0.10,0.15,and 0.20)were synthesized via solid state reaction method.Phase compositions and microstructure of samples were characterized by X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The TG-DSC curves showed that the appropriate baking temperature for Mn-doped NCO spinel preparation was approximately 1 320℃.X-ray diffraction patterns exhibited the formation of NCO spinel with Fd-3m space group.Valence state of the Mn ions was determined from 2p and 3s X-ray photoelectron spectra.Manganese ions were mostly in divalent and trivalent states,and the ratio of Mn^2+/Mn^3+was 0.78-0.98.Fourier transform infrared spectroscopy(FTIR)was used to analyze the spectral emissivity of Mn doped NCO spinel.It was revealed that the infrared emissivity of Mn-doped NCO spinel in 1.8-5μm could be significantly enhanced with increasing content of Mn^2+,reaching as high as 0.9398.Mn-doped NCO spinel showed excellent radiation performance and good prospect in high emissivity applications in the temperature range of 800-1 200℃. 展开更多
关键词 NCO infrared emissivity Mn doped SPINEL XPS
下载PDF
Infrared emissivity of transition elements doped ZnO
2
作者 姚银华 曹全喜 《Journal of Central South University》 SCIE EI CAS 2013年第3期592-598,共7页
Infrared emissivity was studied in Zno.99Mo.olO (M is Mn, Fe or Ni) and Znl_xCoxO (x=0.01, 0.02, 0.03 and 0.04) powders synthesized by solid-state reaction at various temperatures. XRD patterns confirm the wurtzit... Infrared emissivity was studied in Zno.99Mo.olO (M is Mn, Fe or Ni) and Znl_xCoxO (x=0.01, 0.02, 0.03 and 0.04) powders synthesized by solid-state reaction at various temperatures. XRD patterns confirm the wurtzite structure of the prepared samples. No peaks of other phases arising from impurities are detected in Mn- and Co-doped ZnO, hut the peaks of ZnFe204 and NiO are observed in Zno.99Feo.010 and Zno.99Nio.o10. The SEM observations indicate that with larger grain sizes than those of Zn0.99Feo.010 and Zno.99Ni0.010, Co-doped ZnO exhibits smooth grain surfaces. The infrared absorption spectra show that infrared absorptions related to oxygen in Zn0.99M0.010 are much stronger than those in Co-doped ZnO. Co ions are dissolved into the ZnO lattice with Co2+ state from XPS spectra analysis. The infrared emissivity results imply that the emissivity of Zno.99Ni0.010 is the highest (0.829) and that of Zno.99C00.010 is the lowest (0.784) at 1 200 ℃. The emissivity of Zno.99Co0.010 decreases to the minimum (0.752) at 1 150 ℃ and then increases with growing calcination temperature. As the Co doping content grows, the emissivity of Co-doped ZnO calcined at 1 200 ℃ falls to 0.758 in the molar fraction of 3% and then ascends. 展开更多
关键词 solid-state reaction transition element doping infrared absorption spectrum infrared emissivity
下载PDF
Medium and high-entropy transition mental disilicides with improved infrared emissivity for thermal protection applications 被引量:1
3
作者 Juntao Song Yuan Cheng +7 位作者 Huimin Xiang Fu-Zhi Dai Shun Dong Guiqing Chen Ping Hu Xinghong Zhang Wenbo Han Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第5期149-158,共10页
Transition metal disilicides are widely used as heating elements and infrared emission coatings.However,the limited intrinsic infrared emissivity and high thermal conductivity are the main limitations to their applica... Transition metal disilicides are widely used as heating elements and infrared emission coatings.However,the limited intrinsic infrared emissivity and high thermal conductivity are the main limitations to their applications as infrared emission coatings in the thermal protection system.To cope with these prob-lems,four medium and high-entropy transition metal disilicides,i.e.,(V_(0.25)Ta_(0.25)Mo_(0.25)W_(0.25))Si_(2)(ME-1),(Nb_(0.25)Ta_(0.25)Mo_(0.25)W_(0.25))Si_(2)(ME-2),(V_(0.2)Nb_(0.2)Ta_(0.2)Mo_(0.2)W_(0.2))Si_(2)(HE-1),and(Cr_(0.2)Nb_(0.2)Ta_(0.2)Mo_(0.2)W_(0.2))Si_(2)(HE-2),were designed and synthesized by spark plasma sintering method using transition metal binary disilicides as precursors.The introduction of multi-elements into transition metal disilicides not only im-proved the infrared emissivity but also reduced the electrical and thermal conductivity.Among them,(Cr_(0.2)Nb_(0.2)Ta_(0.2)Mo_(0.2)W_(0.2))Si_(2)(HE-2)had the lowest electrical conductivity of 3789 S cm-1,which is over one order of magnitude lower than that of MoSi_(2)(50000 S cm^(-1)),and total infrared emissivity of 0.42 at room temperature,which is nearly double of that of TaSi_(2).Benefiting from low electrical conductivity and phonon scattering due to lattice distortion,the medium and high-entropy transition metal disilicides also demonstrated a significant decline in thermal conductivity compared to their binary counterparts.Of all samples,HE-2 exhibited the lowest thermal conductivity of 6.4 W m^(−1)K^(−1).The high-entropy tran-sition metal disilicides also present excellent oxidation resistance at high temperatures.The improved infrared emissivity,reduced thermal conductivity,excellent oxidation resistance,and lower densities of these medium and high-entropy transition metal disilicides portend that they are promising as infrared emission coating materials for applications in thermal protection systems. 展开更多
关键词 High-entropy ceramics Transition metal disilicides Electrical conductivity infrared emissivity Thermal conductivity
原文传递
Lightweight Dual‑Functional Segregated Nanocomposite Foams for Integrated Infrared Stealth and Absorption‑Dominant Electromagnetic Interference Shielding 被引量:1
4
作者 Zhonglei Ma Ruochu Jiang +8 位作者 Jiayao Jing Songlei Kang Li Ma Kefan Zhang Junxian Li Yu Zhang Jianbin Qin Shuhuan Yun Guangcheng Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期38-55,共18页
Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and hig... Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics. 展开更多
关键词 Segregated nanocomposite foams Microcellular structures infrared stealth EMI shielding Low infrared emissivity
下载PDF
Infrared emissivity and microwave absorbing property of epoxy-polyurethane/annealed carbonyl iron composites coatings 被引量:5
5
作者 CHEN YanPeng XU GuoYue +1 位作者 GUO TengChao ZHOU Ning 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第3期623-628,共6页
The microwave absorption property and infrared emissivity have been investigated for the single-layer coating made of the epoxy-polyurethane resin and carbonyl iron powders with variation of annealing treatment. Micro... The microwave absorption property and infrared emissivity have been investigated for the single-layer coating made of the epoxy-polyurethane resin and carbonyl iron powders with variation of annealing treatment. Microwave-absorbing property was investigated by measuring the complex permittivity and complex permeability of the absorber in the frequency range from 2 to 18 GHz. Infrared emissivity value was measured using IR-2 Infrared Emissometer in the wavelength range of 8-14 μm. After annealing, the Fe (110) peak became sharp, and the crystallization improved significantly. Annealing treatment could reduce the sttrface energy of powders, improve compatibility between fillers and adhesives, and result in increase of the density of the coating. The lowest value of infrared emissivity (0.419) was obtained from the coating made of the carbonyl iron powder annealed at 700℃ for 1 h. With the variation of the annealing temperature, the magnetic and dielectric properties of the carbonyl iron particle were changed. The maximum reflection loss decreased and the matching frequency shifted to lower frequency with increasing the annealing temperature of carbonyl iron particles, which coincided with the variation of the complex permeability and permittivity according to the annealing temperature. Magnetic loss factor and dielectric loss factor of carbonyl iron particles were improved with increasing the annealing temperature in the 2-18 GHz range. 展开更多
关键词 carbonyl iron infrared emissivity microwave absorbing property annealing treatment
原文传递
Improved thermal stability and infrared emissivity of high-entropy REMgAl_(11)O_(19)and LaMAl_(11)O_(19)(RE=La,Nd,Gd,Sm,Pr,Dy;M=Mg,Fe,Co,Ni,Zn) 被引量:4
6
作者 Haolin Zhu Ling Liu +5 位作者 Huimin Xiang Fu-Zhi Dai Xiaohui Wang Zhuang Ma Yanbo Liu Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第9期131-144,共14页
LaMgAl_(11)O_(19)(LMA),characterized by high melting point,low density and thermal conductivity as well as good infrared emissivity,is regarded as a potential candidate for the thermal protection of hypersonic vehicle... LaMgAl_(11)O_(19)(LMA),characterized by high melting point,low density and thermal conductivity as well as good infrared emissivity,is regarded as a potential candidate for the thermal protection of hypersonic vehicles.Nevertheless,the unsatisfied phase stability at high temperature results in declining of the emissivity below 6μm,which limits the extensive applications of LaMgAl_(11)O_(19).In order to overcome this obstacle,three dense bulk high-entropy ceramics,(La_(0.2)Nd_(0.2)Gd_(0.2)Sm_(0.2)Pr_(0.2))MgAl_(11)O_(19)(HE LMA-1),(La_(0.2)Nd_(0.2)Gd_(0.2)Sm_(0.2)Dy_(0.2))Mg Al_(11)O_(19)(HE LMA-2)and La(Mg_(0.2)Fe_(0.2)Co_(0.2)Ni_(0.2)Zn_(0.2))Al_(11)O_(19)(HE LMA-3),were designed and successfully prepared through solid state reaction at 1700℃for 4 h in one step.XRD analyses show that the phase compositions of HE LMA-1,HE LMA-2 and HE LMA-3 are single-phase solid solutions with the relative density of 95.61%,95.49%and 94.31%,respectively.Heat treatment experiments demonstrate that the phase composition of HE LMA-1 remains a single phase after high-temperature heating,while second phase appears in other two samples.The stability of HE LMA-1 is attributed to small average size differenceδ(~4%)of constitute elements.Intriguingly,the average emissivity of HE LMA-1 in the range of 3-6μm reaches 0.9,which is significantly higher than that of LMA and other two HE LMA samples.The emissivity of all samples remains above 0.95 from 6 to 10μm.In the far infrared region(10-14μm),although the emissivity of these specimens decreases slightly,it still exceeds 0.85.The UV-Vis absorption spectra indicate that the formation of many discrete impurity energy levels with small intervals in HE LMA-1 promotes the f electrons to transit between adjacent impurity energy levels and conduction band,which enhances the infrared emission of HE LMA-1 below 6μm.In a word,with improved phase stability and thermal emissivity in infrared range,high-entropy REMgAl_(11)O_(19),especially(La_(0.2)Nd_(0.2)Gd_(0.2)Sm_(0.2)Pr_(0.2))MgAl_(11)O_(19)(HE LMA-1),is a promising candidate in thermal protection coatings of hypersonic vehicles. 展开更多
关键词 High-entropy ceramics LaMgAl_(11)O_(19) Thermal stability infrared emissivity UV-Vis absorption
原文传递
Electroless plating of copper layer on surfaces of urea-formaldehyde microcapsule particles containing paraffin for low infrared emissivity 被引量:5
7
作者 Xi Zhou Jian Mao Zhen Qiao 《Particuology》 SCIE EI CAS CSCD 2016年第1期159-163,共5页
A copper coating was deposited by electroless plating on the surfaces of urea-formaldehyde microcap- sules containing paraffin (UFP) particles. This composite microcapsule structure had low infrared OR) emissivity ... A copper coating was deposited by electroless plating on the surfaces of urea-formaldehyde microcap- sules containing paraffin (UFP) particles. This composite microcapsule structure had low infrared OR) emissivity and maintained a constant temperature, and could be used in IR stealth applications. The eiectroless copper layer formation and its micro-appearance, and the effect of the copper layer on the IR emissivity and thermal properties of the composite microcapsules were investigated. The IR emissivity of the composite microcapsules at wavelengths of 1-14 μm gradually decreased with increasing copper mass on the surface. After formation of an integrated copper layer, the rate of IR emissivity decrease was lower. This is because the copper coating improves the surface conductivity of the UFP; a high conductivity results in high reflectivity, which leads to a decrease in IR emissivity. The lowest IR emissivity achieved was 0.68. The phase-change enthalpy of the composite microcapsules decreased with increasing amount of copper coated on the surface because of the high density of copper. When the mass increase of the UFP after electroless copper plating was about 300%, the composite microcapsules had low IR emissivity (about 0.8) and a high phase-change enthalpy (80J/g). 展开更多
关键词 Phase-change material Urea-formaldehyde microcapsules containing paraffin particle Electroless copper plating Low infrared emissivity Enthalpy
原文传递
Al2O3/SnO2 Co-Nanoparticle Modified Grafted Collagen for Improving Thermal Stability and Infrared Emissivity
8
作者 曹勇 周钰明 +2 位作者 单云 鞠熀先 薜学佳 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2007年第12期1849-1853,共5页
Al2O3/SnO2 co-nanoparticles were prepared with a modified sol-gel technique followed by a thermal treatment process. With these co-nanoparticles the grafted collagen-Al2O3/SnO2 nanocomposites were obtained using a sup... Al2O3/SnO2 co-nanoparticles were prepared with a modified sol-gel technique followed by a thermal treatment process. With these co-nanoparticles the grafted collagen-Al2O3/SnO2 nanocomposites were obtained using a supersonic dispersion method. X-ray diffraction, FT-IR analysis, transmission electron microscopy, TGA/DTA and infrared emissivity test were performed to characterize the resulting nanoparticles and nanocomposites, respectively. The Al2O3/SnO2 co-nanoparticles showed a narrow distribution of size between 20-40 nm and could be uniformly absorbed on the tri-helix scaffolds of the grafted collagen without any aggregation. The nanocomposites possessed better thermal stability and substantially lower infrared emissivity than the grafted collagen and Al2O3/SnO2 co-nanoparticles with an increase of degradation temperature from 39 to 210 ℃ and a decrease of infrared emissivity from 0.850 of the grafted collagen and 0.708 of the Al2O3/SnO2 co-nanoparticles to 0.424, which provided a potential application of the nanocomposites to areas such as photoelectronics. 展开更多
关键词 grafted collagen Al2O3/SnO2 NANOPARTICLE NANOCOMPOSITE thermal stability infrared emissivity
原文传递
Preparation and Characterization of Sn-doped ZnO Particles with Low Infrared Emissivity
9
作者 赵亮 朱永平 《过程工程学报》 CAS CSCD 北大核心 2012年第3期516-521,共6页
Sn-doped ZnO particles were successfully synthesized by chemical co-precipitation method.Their morphology,phase,microstructure and infrared emissivity were characterized.The results show that the Sn-doped ZnO particle... Sn-doped ZnO particles were successfully synthesized by chemical co-precipitation method.Their morphology,phase,microstructure and infrared emissivity were characterized.The results show that the Sn-doped ZnO particles are of ellipsoid shape,their crystalline structure changed with thermal process temperature,the optimal thermal process temperature and Sn-doped proportion are 1000℃ and 15%,respectively,the minimum emissivity values are 0.42,0.28,0.46 and 0.48 corresponding to the infrared wavelengths of 0~∞,3~5,8~14 and 14~20 μm,which indicates that the Sn-doped ZnO particles have the application potential as low infrared emissivity material. 展开更多
关键词 Sn-doped ZnO particles CO-PRECIPITATION low infrared emissivity
原文传递
A thin radar-infrared stealth-compatible structure:Design,fabrication,and characterization 被引量:9
10
作者 田浩 刘海韬 程海峰 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期333-338,共6页
A thin radar-infrared stealth-compatible structure with reflectivity below -10 dB in the whole radar X wave band and infrared emissivity less than 0.3 in the infrared region of 8μm-14 μm is reported. The designed st... A thin radar-infrared stealth-compatible structure with reflectivity below -10 dB in the whole radar X wave band and infrared emissivity less than 0.3 in the infrared region of 8μm-14 μm is reported. The designed stealth-compatible structure consists of metallic frequency selective surface (MFSS), resistive frequency selective surface (RFSS), and metal backing from the top down, and it is only 2. l-mm thick. The MFSS is made up of some divided low infrared emissivity metal copper films, and the RFSS consists of a capacitive array of square resistive patches. They are placed close together, working as an admittance sheet because of a mutual influence between them, and the equivalent admittance sheet greatly reduces the thickness of the whole structure. The proposed stealth-compatible structure is verified both by simulations and by experimental results. These results indicate that our proposed stealth-compatible structure has potential applications in stealth fields. 展开更多
关键词 radar-infrared stealth-compatible structure absorbing property infrared emissivity
下载PDF
Preparation and infrared emissivities of alkali metal doped ZnO powders 被引量:1
11
作者 李会会 黄云霞 +2 位作者 李智敏 姚银华 张淑敏 《Journal of Central South University》 SCIE EI CAS 2014年第9期3449-3455,共7页
Alkali metal(Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were i... Alkali metal(Li, Na, K) doped ZnO powders were synthesized by solid-state reaction at different calcination temperatures and holding time. Effects of holding time and K sources on the infrared emissivity of ZnO were investigated. The structure and surface morphologies of samples were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM). The UV-Vis absorption and infrared emissivities were investigated by a UV-Vis spectrophotometer and an infrared emissometer, respectively. XRD patterns confirm the wurtzite structure of the as prepared samples with single phase. Smooth grain surfaces are detected in all doped ZnO samples, while ZnO:Li and ZnO:Na present the aggregation of grains. The redshifts in the optical band-gap are observed in K-, Na-, and Li-doped ZnO with the values 3.150, 3.144, and 3.142 eV. Due to better crystalline quality, ZnO:K shows a lower emissivity than others. The emissivity of K-doped ZnO decreases to the minimum value(0.804), at 1200 °C and holding 2 h. Compared with KNO3 as K source, K2CO3 doped ZnO has lower emissivities. 展开更多
关键词 infrared emissivity alkali metal crystalline quality optical band-gap ZnO powders
下载PDF
Infrared emissivities of Mn,Co co-doped ZnO powders 被引量:1
12
作者 姚银华 曹全喜 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期263-268,共6页
Infrared emissivities of Zn0.99-xMn0.01CoxO (x = 0.00, 0.01, 0.03, 0.05) powders synthesized at different calcination temperatures by solid-state reaction are investigated. Their phases, morphologies, UV absorption ... Infrared emissivities of Zn0.99-xMn0.01CoxO (x = 0.00, 0.01, 0.03, 0.05) powders synthesized at different calcination temperatures by solid-state reaction are investigated. Their phases, morphologies, UV absorption spectra, and infrared emissivities are studied by XRD, SEM, UV spectrophotometer, and an IR-2 dual-band infrared emissometer in a range of 8 μm-14 μm. Doped ZnO still has a wurtzite structure, and no peaks of other phases originating from impurities are detected. The optical band-gap decreases as the Co content and calcination temperature ascend, and of which the smallest optical band gap is 2.19 eV. The lowest infrared emissivity, 0.754, is observed in Zn0.98Mn0.01Co0.01O with the increase in Co concentration. The infrared emissivity experiences fluctuations as the calcination temperature increases, and its minimum value is 0.762 at 1100 ℃. 展开更多
关键词 co-doped ZnO optical band gap infrared emissivity solid-state reaction
下载PDF
Infrared Thermochromic Properties of VO_2 Thin Films Prepared through Aqueous Sol-gel Process 被引量:2
13
作者 刘东青 程海峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期861-865,共5页
The stoichiometric vanadium(IV) oxide thin films were obtained by controlling the temperature, time and pressure of annealing. The thermochromic phase transition and the IR thermochromic property of 400 nm and 900 n... The stoichiometric vanadium(IV) oxide thin films were obtained by controlling the temperature, time and pressure of annealing. The thermochromic phase transition and the IR thermochromic property of 400 nm and 900 nm VO2 thin films in the 7.5 μm-14 μm region were discussed. The derived VO2 thin film samples were characterized by Raman, XRD, XPS, AFM, SEM, and DSC. The resistance and infrared emissivity of VO2 thin films under different temperature were measured, and the thermal images of films were obtained using infrared imager. The results show that the VO2 thin film annealed at 550 ℃ for 10 hours through aqueous sol-gel process is pure and uniform. The 900 nm VO2 thin film exhibits better IR thermochromic property than the 400 nm VO2 thin film. The resistance of 900 nm VO2 film can change by 4 orders of magnitude and the emissivity can change by 0.6 during the phase transition, suggesting the outstanding IR thermochromic property. The derived VO2 thin film can control its infrared radiation intensity and lower its apparent temperature actively when the real temperature increases, which may be applied in the field of energy saving, thermal control and camouflage. 展开更多
关键词 vanadium dioxide thermochromism infrared emissivity sol-gel thin film
下载PDF
Infrared Measurements of Heating and Cooling Emissions in Aluminium and Steel during Tensile and Cyclic Loading 被引量:1
14
作者 黄毅 G.E.Hicho R.J.Fields 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1990年第2期106-111,共6页
In this paper,a new thermographic method based on the measurement of infrared emission(IR) from the surface of loaded body has been used to study the cooling and heating in aluminium and steel specimens under tensile ... In this paper,a new thermographic method based on the measurement of infrared emission(IR) from the surface of loaded body has been used to study the cooling and heating in aluminium and steel specimens under tensile and cyclic loading.A typical test procedure using infrared to measure thermographic changes near the crack tip and the immediate surrounding area is described.In addi- tion,a procedure for determining the stress concen- tration near the crack tip is also presented.Results are given for thermoelastic cooling phenomenon of metals during the tensile process and IR cooling and IR heating emissions at the crack tip during cyclic loading.Attention is drawn to the multiple phenomenon of IR cooling emission in the received signal as the applied load range increases beyond the elastic limit of both metals.A new application of the IR technique to the determination of the po- sition of crack tip during cyclic loading is also pres- ented. 展开更多
关键词 thermoelastic effect stress concentration elastic-plastic deformation infrared emission
下载PDF
Unidentified Infrared Discrete Emission Bands 被引量:1
15
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 2022年第2期243-253,共11页
Unidentified Infrared emission bands (UIBs) are infrared discrete emissions from circumstellar regions, interstellar media (ISM), star-forming regions, and extragalactic objects for which the identity of the emitting ... Unidentified Infrared emission bands (UIBs) are infrared discrete emissions from circumstellar regions, interstellar media (ISM), star-forming regions, and extragalactic objects for which the identity of the emitting materials is unknown. The main infrared features occur around peaks at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 μm with the photon’s rest energy at the peaks 0.376, 0.200, 0.161, 0.144, 0.111, and 0.098 eV, respectively. The UIB emission phenomenon has been studied for about forty five years. The prevailing hypothesis is that the materials responsible for UIB are polycyclic aromatic hydrocarbon (PAH) molecules. PAHs are thought to be one of the main forms in which carbon exists in space. And yet, not a single member of this group of compounds had been identified in space definitively until now [1]. In frames of Hypersphere World-Universe Model (WUM), we introduced Dark Matter (DM) particles, named DIONs, with the rest energy 0.199 eV and an energy density of 68.8% of the total energy density of the World. DIONs compose Outer shells of DM Supercluster’s Cores—the main objects of the World [2]. In this paper, we give an explanation of UIB emission based on the self-annihilation of DM particles DIONs and biDIONs (DIONs pairs) with a rest energy about 0.38 eV that depends on the binding energy. To the best of our knowledge, WUM is the only cosmological model in existence that is consistent with UIB emission phenomenon. 展开更多
关键词 Hypersphere World-Universe Model Law of Energy Conservation Interstellar Media Dark Matter Particles Self-annihilation Unidentified infrared Emission Bands
下载PDF
Current Status and Prospect of Infrared Radiation Ceramics for Energy-saving Applications in High Temperature Furnaces
16
作者 YE Jianke WANG Feng LI Jiangtao 《China's Refractories》 CAS 2015年第3期12-17,共6页
Nowadays,it is a great challenge to reduce energy consumption and exhaust emission for human activities,in particular,high temperature industries.Among many efforts made to realize energy savings for high temperature ... Nowadays,it is a great challenge to reduce energy consumption and exhaust emission for human activities,in particular,high temperature industries.Among many efforts made to realize energy savings for high temperature furnaces and kilns,the use of high emissivity materials is considered to be an effective route to increase their thermal efficiency by enhancing heat transfer.Most materials with high refractoriness and superior chemical stability have weak infrared absorption and radiation properties;however,their emissivity in infrared regions(1 —25 μm) could be effectively increased by ion doping.This is attributed to three main mechanisms:1) distortion of the crystal lattice;2) increase of free carrier absorption; 3) formation of impurity energy level.In this paper,the development and advancement of various material systems with high emissivity including non-oxides and oxide based ceramics were reviewed.It is also suggested that the establishment of evaluation models or instruments for energy savings would be beneficial to design and application of high emissivity materials in various high-temperature environment.Furthermore,more efforts should be made on durability of high emissivity materials at high service temperatures and on the standardization of testing methods for emissivity. 展开更多
关键词 infrared radiation ceramics emission property preparation
下载PDF
Preparation and cooling performance analysis of double-layer radiative cooling hybrid coatings with TiO_(2)/SiO_(2)/Si_(3)N_(4) micron particles 被引量:1
17
作者 赵洋春 周勇敏 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期498-507,共10页
Passive daytime radiative cooling is achieved by radiating heat into outer space through electromagnetic waves without energy consumption. A scalable double-layer coating with a mixture of TiO_(2), SiO_(2), and Si_(3)... Passive daytime radiative cooling is achieved by radiating heat into outer space through electromagnetic waves without energy consumption. A scalable double-layer coating with a mixture of TiO_(2), SiO_(2), and Si_(3)N_(4)micron particles for radiative cooling is proposed in this study. The finite-difference time-domain algorithm is used to analyze the influence of particle size and coating thickness on radiative cooling performance. The results of the simulation show that the particle size of 3 μm can give the best cooling performance, and the coating thickness should be above 25 μm for SiO_(2)coating. Meanwhile, the mixture of SiO_(2)and Si_(3)N_(4)significantly improves the overall emissivity. Through sample preparation and characterization,the mixture coating with a 1:1 ratio addition on an Al substrate exhibits high reflectivity with a value of 87.6% in the solar spectrum, and an average emissivity of 92% in the infrared region(2.5 μm–15 μm), which can be attributed to the synergy among the optical properties of the material. Both coatings can theoretically be cooled by about 8℃ during the day and about 21℃ at nighttime with hc = 4 W·m^(-2)·K^(-1). Furthermore, even considering the significant conduction and convection exchanges, the cooling effect persists. Outdoor experimental results show that the temperature of the double-layer radiative cooling coating is always lower than the ambient temperature under direct sunlight during the day, and can be cooled by about 5℃ on average, while lower than the temperature of the aluminum film by almost 12℃. 展开更多
关键词 radiative cooling coatings thermal radiation infrared emissivity
下载PDF
Effect of fabrication conditions on the properties of indium tin oxide powders 被引量:2
18
作者 谢卫 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第7期2683-2688,共6页
This paper reports that indium tin oxide (ITO) crystalline powders are prepared by coprecipitation method. Fabrication conditions mainly as sintering temperature and Sn doping content are correlated with the phase, ... This paper reports that indium tin oxide (ITO) crystalline powders are prepared by coprecipitation method. Fabrication conditions mainly as sintering temperature and Sn doping content are correlated with the phase, microstructure, infrared emissivity c and powder resistivity of indium tin oxides by means of x-ray diffraction, Fourier transform infrared, and transmission electron microscope. The optimum sintering temperature of 1350℃ and Sn doping content 6~8wt% are determined. The application of ITO in the military camouflage field is proposed. 展开更多
关键词 tin-doped indium sintering temperature infrared emissivity powder resistivity
下载PDF
Structural and Optical Performance of GaN Thick Film Grown by HVPE
19
作者 魏同波 马平 +5 位作者 段瑞飞 王军喜 李晋闽 刘喆 林郭强 曾一平 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第1期19-23,共5页
Thick GaN films were grown on GaN/sapphire template in a vertical HVPE reactor. Various material characterization techniques,including AFM, SEM, XRD, RBS/Channeling, CL, PL, and XPS, were used to characterize these Ga... Thick GaN films were grown on GaN/sapphire template in a vertical HVPE reactor. Various material characterization techniques,including AFM, SEM, XRD, RBS/Channeling, CL, PL, and XPS, were used to characterize these GaN epitaxial films. It was found that stepped/terraced structures appeared on the film surface,which were indicative of a nearly step-flow mode of growth for the HVPE GaN despite the high growth rate. A few hexagonal pits appeared on the surface, which have strong light emission. After being etched in molten KOH, the wavy steps disappeared and hexagonal pits with {1010} facets appeared on the surface. An EPD of only 8 ×10^6cm^-2 shows that the GaN film has few dislocations. Both XRD and RBS channeling indicate the high quality of the GaN thick films. Sharp band-edge emission with a full width at half maximum(FWHM)of 67meV was observed, while the yellow and infrared emissions were also found. These emissions are likely caused by native defects and C and O impurities. 展开更多
关键词 GAN HVPE CL RBS/channeling yellow emission infrared emission
下载PDF
Visible transparent,infrared stealthy polymeric films with nanocoating of ITO@MXene enable efficient passive radiative heating and solar/electric thermal conversion 被引量:1
20
作者 Xingyuan Du Xiangxin Li +6 位作者 Yuxuan Zhang Xinyi Guo Zhengji Li Yanxia Cao Yanyu Yang Wanjie Wang Jianfeng Wang 《Nano Research》 SCIE EI CSCD 2023年第2期3326-3332,共7页
Visible transparent yet low infrared-emissivity(ε)polymeric materials are highly anticipated in many applications,whereas the fabrication of which remains a formidable challenge.Herein,visible transparent,flexible,an... Visible transparent yet low infrared-emissivity(ε)polymeric materials are highly anticipated in many applications,whereas the fabrication of which remains a formidable challenge.Herein,visible transparent,flexible,and low-εpolymeric films were fabricated by nanocoating decoration of indium tin oxide(ITO)and MXene on polyethylene terephthalate(PET)film surface through magnetron sputtering and spray coating,respectively.The obtained PET-ITO@MXene(PET-IM)film exhibits lowεof 24.7%and high visible transmittance exceeding 50%,endowing it with excellent visible transparent infrared stealthy by reducing human skin radiation temperature from 32 to 20.8°C,and remarkable zero-energy passive radiative heating capability(5.7°C).Meanwhile,the transparent low-εPET-IM film has high solar absorptivity and electrical conductivity,enabling superior solar/electric to thermal conversion performance.Notably,the three heating modes of passive radiative and active solar/electric can be integrated together to cope with complex heating scenarios.These visible transparent low-εpolymeric films are highly promising in infrared stealth,building daylighting and thermal management,and personal precision heating. 展开更多
关键词 transparent polymeric film nanocoating decoration ITO@MXene low infrared emissivity passive radiative heating solar/electric heating
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部