Layup temperature is a vital factor that affects the production quality of automated fiber placement for thermoset composites.For high quality production,this paper proposes a new prediction model of layup temperature...Layup temperature is a vital factor that affects the production quality of automated fiber placement for thermoset composites.For high quality production,this paper proposes a new prediction model of layup temperature by considering the structure of infrared heater of automatic fiber placement equipment.The model was first verified by comparing with the temperature results of layup experiments.Then a prediction on the effects of heater structure arrangement on layup temperature was conducted in the model.The research shows that the length of infrared tube and the radian of reflective-film have significant influences,rather than other parameters.According to this investigation,a heater structure-based heating strategy was presented in the paper to efficiently achieve constant temperature control in variable speed layup process.展开更多
Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design pa...Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.展开更多
No studies have examined the effect of experimental warming on the microbial biomass and community composition of soil in agricultural ecosystem on the Qinghai-Tibet Plateau. Thus it is unclear whether the influences ...No studies have examined the effect of experimental warming on the microbial biomass and community composition of soil in agricultural ecosystem on the Qinghai-Tibet Plateau. Thus it is unclear whether the influences of experimental warming on microbial communities in soil are related to warming magnitude in croplands on this Plateau. This study performed warming experiment(control, low-and high-level) in a highland barley system of the Lhasa River in May 2014 to examine the correlation between the response of microbial communities in soil to warming and warming magnitude. Topsoil samples(0–10 and 10–20 cm) were collected on September 14, 2014. Experimental warming at both low and high levels significantly increased soil temperature by 1.02 ℃ and 1.59 ℃, respectively at the depth of 15 cm. Phospho lipid fatty acid(PLFA) method was used to determine the microbial community in soil. The low-level experimental warming did not significantly affect the soil’s total PLFA, fungi, bacteria, arbuscular mycorrhizal fungi(AMF), actinomycetes, gram-positive bacteria(G+), gram-negative bacteria(G–), protozoa, the ratio of fungi to bacteria(F/B ratio), and ratio of G+ to G–(G+/G– ratio) at the 0–10 and 10–20 cm depth. The low-level experimental warming also did not significantly alter the composition of microbial community in soil at the 0–10 and 10–20 cm depth. The high-level experimental warming significantly increased total PLFA by 74.4%, fungi by 78.0%, bacteria by 74.0%, AMF by 66.9%, actinomycetes by 81.4%, G+ by 67.0% and G– by 74.4% at the 0–10 cm depth rather than at 10–20 cm depth. The high-level experimental warming significantly altered microbial community composition in soil at the 0–10 cm depth rather than at 10-20 cm depth. Our findings suggest that the response of microbial communities in soil to warming varied with warming magnitudes in the highland barley system of the Lhasa River.展开更多
基金supported by the National Natural Science Foundation of China(No.51805476)the Fundamental Research Funds for the Central Universities of China(No.2019FZA4001)the Major Research plan of the National Natural Science Foundation of China(No.91748204).
文摘Layup temperature is a vital factor that affects the production quality of automated fiber placement for thermoset composites.For high quality production,this paper proposes a new prediction model of layup temperature by considering the structure of infrared heater of automatic fiber placement equipment.The model was first verified by comparing with the temperature results of layup experiments.Then a prediction on the effects of heater structure arrangement on layup temperature was conducted in the model.The research shows that the length of infrared tube and the radian of reflective-film have significant influences,rather than other parameters.According to this investigation,a heater structure-based heating strategy was presented in the paper to efficiently achieve constant temperature control in variable speed layup process.
基金supported by the Second Stage of Brain Korea 21 Projects
文摘Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer.
基金National Natural Science Foundation of China(31370458,31600432,41807331)Bingwei Outstanding Young Talents Program of Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences(2018RC202)+2 种基金National Key Research Projects of China(2016YFC0502005,2016YFC0502006,2017YFA0604801)Youth Innovation Research Team Project of Key Laboratory of Ecosystem Network Observation and Modeling(LENOM2016Q0002)Tibet Science and Technology Major Projects of Pratacultural Industry(XZ201801NA02)
文摘No studies have examined the effect of experimental warming on the microbial biomass and community composition of soil in agricultural ecosystem on the Qinghai-Tibet Plateau. Thus it is unclear whether the influences of experimental warming on microbial communities in soil are related to warming magnitude in croplands on this Plateau. This study performed warming experiment(control, low-and high-level) in a highland barley system of the Lhasa River in May 2014 to examine the correlation between the response of microbial communities in soil to warming and warming magnitude. Topsoil samples(0–10 and 10–20 cm) were collected on September 14, 2014. Experimental warming at both low and high levels significantly increased soil temperature by 1.02 ℃ and 1.59 ℃, respectively at the depth of 15 cm. Phospho lipid fatty acid(PLFA) method was used to determine the microbial community in soil. The low-level experimental warming did not significantly affect the soil’s total PLFA, fungi, bacteria, arbuscular mycorrhizal fungi(AMF), actinomycetes, gram-positive bacteria(G+), gram-negative bacteria(G–), protozoa, the ratio of fungi to bacteria(F/B ratio), and ratio of G+ to G–(G+/G– ratio) at the 0–10 and 10–20 cm depth. The low-level experimental warming also did not significantly alter the composition of microbial community in soil at the 0–10 and 10–20 cm depth. The high-level experimental warming significantly increased total PLFA by 74.4%, fungi by 78.0%, bacteria by 74.0%, AMF by 66.9%, actinomycetes by 81.4%, G+ by 67.0% and G– by 74.4% at the 0–10 cm depth rather than at 10–20 cm depth. The high-level experimental warming significantly altered microbial community composition in soil at the 0–10 cm depth rather than at 10-20 cm depth. Our findings suggest that the response of microbial communities in soil to warming varied with warming magnitudes in the highland barley system of the Lhasa River.