期刊文献+
共找到92篇文章
< 1 2 5 >
每页显示 20 50 100
Meibomian glands segmentation in infrared images with limited annotation
1
作者 Jia-Wen Lin Ling-Jie Lin +5 位作者 Feng Lu Tai-Chen Lai Jing Zou Lin-Ling Guo Zhi-Ming Lin Li Li 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期401-407,共7页
●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS... ●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS:Totally 203 infrared meibomian images from 138 patients with dry eye disease,accompanied by corresponding annotations,were gathered for the study.A rectified scribble-supervised gland segmentation(RSSGS)model,incorporating temporal ensemble prediction,uncertainty estimation,and a transformation equivariance constraint,was introduced to address constraints imposed by limited supervision information inherent in scribble annotations.The viability and efficacy of the proposed model were assessed based on accuracy,intersection over union(IoU),and dice coefficient.●RESULTS:Using manual labels as the gold standard,RSSGS demonstrated outcomes with an accuracy of 93.54%,a dice coefficient of 78.02%,and an IoU of 64.18%.Notably,these performance metrics exceed the current weakly supervised state-of-the-art methods by 0.76%,2.06%,and 2.69%,respectively.Furthermore,despite achieving a substantial 80%reduction in annotation costs,it only lags behind fully annotated methods by 0.72%,1.51%,and 2.04%.●CONCLUSION:An innovative automatic segmentation model is developed for MGs in infrared eyelid images,using scribble annotation for training.This model maintains an exceptionally high level of segmentation accuracy while substantially reducing training costs.It holds substantial utility for calculating clinical parameters,thereby greatly enhancing the diagnostic efficiency of ophthalmologists in evaluating meibomian gland dysfunction. 展开更多
关键词 infrared meibomian glands images meibomian gland dysfunction meibomian glands segmentation weak supervision scribbled annotation
下载PDF
Research on Infrared Image Fusion Technology Based on Road Crack Detection
2
作者 Guangjun Li Lin Nan +3 位作者 Lu Zhang Manman Feng Yan Liu Xu Meng 《Journal of World Architecture》 2023年第3期21-26,共6页
This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to pr... This study aimed to propose road crack detection method based on infrared image fusion technology.By analyzing the characteristics of road crack images,this method uses a variety of infrared image fusion methods to process different types of images.The use of this method allows the detection of road cracks,which not only reduces the professional requirements for inspectors,but also improves the accuracy of road crack detection.Based on infrared image processing technology,on the basis of in-depth analysis of infrared image features,a road crack detection method is proposed,which can accurately identify the road crack location,direction,length,and other characteristic information.Experiments showed that this method has a good effect,and can meet the requirement of road crack detection. 展开更多
关键词 Road crack detection infrared image fusion technology Detection quality
下载PDF
Model-based deep learning for fiber bundle infrared image restoration
3
作者 Bo-wen Wang Le Li +4 位作者 Hai-bo Yang Jia-xin Chen Yu-hai Li Qian Chen Chao Zuo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期38-45,共8页
As the representative of flexibility in optical imaging media,in recent years,fiber bundles have emerged as a promising architecture in the development of compact visual systems.Dedicated to tackling the problems of u... As the representative of flexibility in optical imaging media,in recent years,fiber bundles have emerged as a promising architecture in the development of compact visual systems.Dedicated to tackling the problems of universal honeycomb artifacts and low signal-to-noise ratio(SNR)imaging in fiber bundles,the iterative super-resolution reconstruction network based on a physical model is proposed.Under the constraint of solving the two subproblems of data fidelity and prior regularization term alternately,the network can efficiently“regenerate”the lost spatial resolution with deep learning.By building and calibrating a dual-path imaging system,the real-world dataset where paired low-resolution(LR)-high-resolution(HR)images on the same scene can be generated simultaneously.Numerical results on both the United States Air Force(USAF)resolution target and complex target objects demonstrate that the algorithm can restore high-contrast images without pixilated noise.On the basis of super-resolution reconstruction,compound eye image composition based on fiber bundle is also embedded in this paper for the actual imaging requirements.The proposed work is the first to apply a physical model-based deep learning network to fiber bundle imaging in the infrared band,effectively promoting the engineering application of thermal radiation detection. 展开更多
关键词 Fiber bundle Deep learning infrared imaging image restoration
下载PDF
Infrared image segmentation method based on 2D histogram shape modification and optimal objective function 被引量:8
4
作者 Songtao Liu Donghua Gao Fuliang Yin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第3期528-536,共9页
In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, the... In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, they are weak in suppressing background noises and worse in segmenting targets with non-uniform gray level. The concept of 2D histogram shape modification is proposed, which is realized by target information prior restraint after enhancing target information using plateau histogram equalization. The formula of 2D minimum Renyi entropy is deduced for image segmentation, then the shape-modified 2D histogram is combined wfth four optimal objective functions (i.e., maximum between-class variance, maximum entropy, maximum correlation and minimum Renyi entropy) respectively for the appli- cation of infrared image segmentation. Simultaneously, F-measure is introduced to evaluate the segmentation effects objectively. The experimental results show that F-measure is an effective evaluation index for image segmentation since its value is fully consistent with the subjective evaluation, and after 2D histogram shape modification, the methods of optimal objective functions can overcome their original forms' deficiency and their segmentation effects are more or less improvements, where the best one is the maximum entropy method based on 2D histogram shape modification. 展开更多
关键词 infrared image segmentation 2D histogram Otsu maximum entropy maximum correlation minimum Renyi entropy.
下载PDF
Fault diagnosis of electric transformers based on infrared image processing and semi-supervised learning 被引量:4
5
作者 Jian Fang Fan Yang +2 位作者 Rui Tong Qin Yu Xiaofeng Dai 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期596-607,共12页
It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and ac... It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and accurate manner.To this end,a transformer fault diagnosis method based on infrared image processing and semi-supervised learning is proposed herein.First,we perform feature extraction on the collected infrared-image data to extract temperature,texture,and shape features as the model reference vectors.Then,a generative adversarial network(GAN)is constructed to generate synthetic samples for the minority subset of labelled samples.The proposed method can learn information from unlabeled sample data,unlike conventional supervised learning methods.Subsequently,a semi-supervised graph model is trained on the entire dataset,i.e.,both labeled and unlabeled data.Finally,we test the proposed model on an actual dataset collected from a Chinese electricity provider.The experimental results show that the use of feature extraction,sample generation,and semi-supervised learning model can improve the accuracy of transformer fault classification.This verifies the effectiveness of the proposed method. 展开更多
关键词 TRANSFORMER Fault diagnosis infrared image Generative adversarial network Semi-supervised learning
下载PDF
Utilization of Thermal Infrared Image for Inversion of Winter Wheat Yield and Biomass 被引量:3
6
作者 DU Wen-yong ZHANG Lu-da +7 位作者 HU Zhen-fang Shamaila Z ZENG Ai-jun SONG Jian-li LIU Ya-jia Wolfram S Joachim M HE Xiong-kui 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第6期1476-1480,共5页
The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time tha... The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass.The temperature of crop and background was measured by thermal infrared image.It is necessary to get the crop background separation index(CBSIL,CBSIH),which can be used for distinguishing the crop value from the image.CBSIL and CBSIH(the temperature when the leaves are wet adequately;the temperature when the stomata of leaf is closed completely) are the threshold values.The temperature of crop ranged from CBSIL to CBSIH.Then the ICWSI was calculated based on relevant theoretical method.The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI.In order to construct the high accuracy simulation model,the samples were divided into two parts.One was used for constructing the simulation model,the other for checking the accuracy of the model.Such result of the model was concluded as:(1) As for the simulation model of soil moisture,the correlation coefficient(R2) is larger than 0.887 6,the average of relative error(Er) ranges from 13.33% to 16.88%;(2) As for the simulation model of winter wheat yield,drip irrigation(0.887 6,16.89%,-0.12),sprinkler irrigation(0.970 0,14.85%,-0.12),flood irrigation(0.969 0,18.87%,0.18),with the values of R2,Er and CRM listed in the parentheses followed by the individual term.(3) As for winter wheat biomass,drip irrigation(0.980 0,13.70%,0.13),sprinkler irrigation(0.95,13.15%,-0.14),flood irrigation(0.970 0,14.48%,-0.13),and the values in the parentheses are demonstrated the same as above.Both the CRM and Er are shown to be very low values,which points to the accuracy and reliability of the model investigated.The accuracy of model is high and reliable.The results indicated that thermal infrared image can be used potentially for inversion of winter wheat yield and biomass. 展开更多
关键词 Thermal infrared image infrared index ICWSI Technology of irrigation
下载PDF
Experimental study of weld position detection based on keyhole infrared image during high power fiber laser welding 被引量:1
7
作者 陈余泉 高向东 +1 位作者 萧振林 陈晓辉 《China Welding》 EI CAS 2015年第3期45-51,共7页
Keyhole is one of the important phenomena in high-power laser welding process. By studying the keyhole characteristic and detecting the seam offset during high-power fiber laser welding, an infrared sensitive high-spe... Keyhole is one of the important phenomena in high-power laser welding process. By studying the keyhole characteristic and detecting the seam offset during high-power fiber laser welding, an infrared sensitive high-speed camera arranged off-axis orientation of laser beam was applied to capture the dynamic thermal images of a molten pool. The 304 austenitic stainless steel plate butt joint welding experiment with laser power 10 kW was carried out. Through analyzing the keyhole infrared image, the weld position was calculated. Least squares method was used to determine the actual weld position. Image filtering technique was used to process the keyhole image, and the keyhole centroid coordinate were calculated. Also, least squares method was used to fit the keyhole centroid curve equation and establish a nonlinear continuous model which described the deviation between keyhole centroid and weld seam. The heat accumulation effect affected by the infrared radiation was analyzed to determine whether the laser beam focus spot deviated from the desired welding seam. Experimental results showed that the keyhole centroid has related to the seam offset, and can reflect the welding quality. 展开更多
关键词 infrared image keyhole centroid high power fiber laser welding seam offset
下载PDF
Infrared image simulation of ground maneuver target and scene
8
作者 穆成坡 彭明松 +2 位作者 高翔 张睿恒 董清先 《Journal of Beijing Institute of Technology》 EI CAS 2016年第2期247-253,共7页
Infrared scene simulation has extensive applications in military and civil fields. Based on a certain experimental environment,object-oriented graphics rendering engine( OGRE) is utilized to simulate a real three-di... Infrared scene simulation has extensive applications in military and civil fields. Based on a certain experimental environment,object-oriented graphics rendering engine( OGRE) is utilized to simulate a real three-dimensional infrared complex scene. First,the target radiation of each part is calculated based on our experimental data. Then through the analysis of the radiation characteristics of targets and related material,an infrared texture library is established and the 3ds Max software is applied to establish an infrared radiation model.Finally,a real complex infrared scene is created by using the OGRE engine image rendering technology and graphic processing unit( GPU) programmable pipeline technology. The results show that the simulation images are very similar to real images and are good supplements to real data. 展开更多
关键词 maneuver target target scene image simulation infrared image object-orientedgraphics rendering engine (OGRE)
下载PDF
DIGITAL CONTOUR ENHANCEMENT OF INFRARED IMAGE
9
作者 李腊元 《Acta Mathematica Scientia》 SCIE CSCD 1995年第S1期103-108,共6页
The digital contour enhancement techniques of infrared image are discussed. Emphasis is laid the thermal spread compensation method. On the basis of describing the theory of the method, a model is suggested. The concr... The digital contour enhancement techniques of infrared image are discussed. Emphasis is laid the thermal spread compensation method. On the basis of describing the theory of the method, a model is suggested. The concrete project based on the model for realizing digital contour enhancement of the infrared thermal image is put forward, and some test results are shown. 展开更多
关键词 infrared image processing ENHANCEMENT Real time Theory and model.
下载PDF
Automatic infrared image recognition method for substation equipment based on a deep self-attention network and multi-factor similarity calculation
10
作者 Yaocheng Li Yongpeng Xu +4 位作者 Mingkai Xu Siyuan Wang Zhicheng Xie Zhe Li Xiuchen Jiang 《Global Energy Interconnection》 EI CAS CSCD 2022年第4期397-408,共12页
Infrared image recognition plays an important role in the inspection of power equipment.Existing technologies dedicated to this purpose often require manually selected features,which are not transferable and interpret... Infrared image recognition plays an important role in the inspection of power equipment.Existing technologies dedicated to this purpose often require manually selected features,which are not transferable and interpretable,and have limited training data.To address these limitations,this paper proposes an automatic infrared image recognition framework,which includes an object recognition module based on a deep self-attention network and a temperature distribution identification module based on a multi-factor similarity calculation.First,the features of an input image are extracted and embedded using a multi-head attention encoding-decoding mechanism.Thereafter,the embedded features are used to predict the equipment component category and location.In the located area,preliminary segmentation is performed.Finally,similar areas are gradually merged,and the temperature distribution of the equipment is obtained to identify a fault.Our experiments indicate that the proposed method demonstrates significantly improved accuracy compared with other related methods and,hence,provides a good reference for the automation of power equipment inspection. 展开更多
关键词 Substation equipment infrared image intelligent recognition Deep self-attention network Multi-factor similarity calculation
下载PDF
Color Estimation for Thermal Infrared Imagery Based on Kernel PCA and Sparse Representation
11
作者 孙韶媛 赵海涛 谷小婧 《Journal of Donghua University(English Edition)》 EI CAS 2012年第6期475-479,共5页
Adding colors to monochrome thermal infrared images can help observers understand the scenery better. A nonlinear color estimation method for single-band thermal infrared imagery based on kernel principal component an... Adding colors to monochrome thermal infrared images can help observers understand the scenery better. A nonlinear color estimation method for single-band thermal infrared imagery based on kernel principal component analysis (KPCA) and sparse representation was proposed. Nonlinear features of infrared image were extracted using KPCA. The relationship between image features and chromatic values was learned using sparse representation and a color estimation model was obtained. The thermal infrared images can be rendered automatically using the color estimation model. The experimental results show that the proposed method can render infrared image with an accurate color appearance. The proposed idea can also be used in other color estimation problem. 展开更多
关键词 color night vision infrared image rendering kernel principal component analysis (KPCA) sparse representation
下载PDF
Double-ended passivator enables dark-current-suppressed colloidal quantum dot photodiodes for CMOS-integrated infrared imagers
12
作者 Peilin Liu Shuaicheng Lu +13 位作者 Jing Liu Bing Xia Gaoyuan Yang Mo Ke Xuezhi Zhao Junrui Yang Yuxuan Liu Ciyu Ge Guijie Liang Wei Chen Xinzheng Lan Jianbing Zhang Liang Gao Jiang Tang 《InfoMat》 SCIE CSCD 2024年第1期108-122,共15页
Lead sulfide(PbS)colloidal quantum dot(CQD)photodiodes integrated with silicon-based readout integrated circuits(ROICs)offer a promising solution for the next-generation short-wave infrared(SWIR)imaging technology.Des... Lead sulfide(PbS)colloidal quantum dot(CQD)photodiodes integrated with silicon-based readout integrated circuits(ROICs)offer a promising solution for the next-generation short-wave infrared(SWIR)imaging technology.Despite their potential,large-size CQD photodiodes pose a challenge due to high dark currents resulting from surface states on nonpassivated(100)facets and trap states generated by CQD fusion.In this work,we present a novel approach to address this issue by introducing double-ended ligands that supplementally passivate(100)facets of halidecapped large-size CQDs,leading to suppressed bandtail states and reduced defect concentration.Our results demonstrate that the dark current density is highly suppressed by about an order of magnitude to 9.6 nA cm^(2) at -10 mV,which is among the lowest reported for PbS CQD photodiodes.Furthermore,the performance of the photodiodes is exemplary,yielding an external quantum efficiency of 50.8%(which corresponds to a responsivity of 0.532 A W^(-1))and a specific detectivity of 2.5×10^(12) Jones at 1300 nm.By integrating CQD photodiodes with CMOS ROICs,the CQD imager provides high-resolution(640×512)SWIR imaging for infrared penetration and material discrimination. 展开更多
关键词 CMOS integration colloidal quantum dots dark current suppression double-ended passivation infrared imager
原文传递
IR-YOLO: Real-Time Infrared Vehicle and Pedestrian Detection
13
作者 Xiao Luo Hao Zhu Zhenli Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第2期2667-2687,共21页
Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means... Road traffic safety can decrease when drivers drive in a low-visibility environment.The application of visual perception technology to detect vehicles and pedestrians in infrared images proves to be an effective means of reducing the risk of accidents.To tackle the challenges posed by the low recognition accuracy and the substan-tial computational burden associated with current infrared pedestrian-vehicle detection methods,an infrared pedestrian-vehicle detection method A proposal is presented,based on an enhanced version of You Only Look Once version 5(YOLOv5).First,A head specifically designed for detecting small targets has been integrated into the model to make full use of shallow feature information to enhance the accuracy in detecting small targets.Second,the Focal Generalized Intersection over Union(GIoU)is employed as an alternative to the original loss function to address issues related to target overlap and category imbalance.Third,the distribution shift convolution optimization feature extraction operator is used to alleviate the computational burden of the model without significantly compromising detection accuracy.The test results of the improved algorithm show that its average accuracy(mAP)reaches 90.1%.Specifically,the Giga Floating Point Operations Per second(GFLOPs)of the improved algorithm is only 9.1.In contrast,the improved algorithms outperformed the other algorithms on similar GFLOPs,such as YOLOv6n(11.9),YOLOv8n(8.7),YOLOv7t(13.2)and YOLOv5s(16.0).The mAPs that are 4.4%,3%,3.5%,and 1.7%greater than those of these algorithms show that the improved algorithm achieves higher accuracy in target detection tasks under similar computational resource overhead.On the other hand,compared with other algorithms such as YOLOv8l(91.1%),YOLOv6l(89.5%),YOLOv7(90.8%),and YOLOv3(90.1%),the improved algorithm needs only 5.5%,2.3%,8.6%,and 2.3%,respectively,of the GFLOPs.The improved algorithm has shown significant advancements in balancing accuracy and computational efficiency,making it promising for practical use in resource-limited scenarios. 展开更多
关键词 Traffic safety infrared image pedestrians and vehicles focal GIoU distributed shift convolution
下载PDF
Heat transfer and temperature evolution in underground mininginduced overburden fracture and ground fissures: Optimal time window of UAV infrared monitoring
14
作者 Yixin Zhao Kangning Zhang +2 位作者 Bo Sun Chunwei Ling Jihong Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期31-50,共20页
Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st... Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures. 展开更多
关键词 Heat transfer Overburden fracture Ground fissures infrared thermal imaging Unmanned aerial vehicle(UAV) COMSOL simulation
下载PDF
Recognition of Blast Furnace Gas Flow Center Distribution Based on Infrared Image Processing 被引量:5
15
作者 Lin SHI You-bin WEN +1 位作者 Guang-sheng ZHAO Tao YU 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2016年第3期203-209,共7页
To address the problems about the difficulty in accurate recognition of distribution features of gas flow center at blast furnace throat and determine the relationship between gas flow center distribution and gas util... To address the problems about the difficulty in accurate recognition of distribution features of gas flow center at blast furnace throat and determine the relationship between gas flow center distribution and gas utilization rate,a method for recognizing distribution features of blast furnace gas flow center was proposed based on infrared image processing,and distribution features of blast furnace gas flow center and corresponding gas utilization rates were categorized by using fuzzy C-means clustering and statistical methods.A concept of gas flow center offset was introduced.The results showed that,when the percentage of gas flow center without offset exceeded 85%,the average blast furnace gas utilization rate was as high as 41%;when the percentage of gas flow center without offset exceeded50%,the gas utilization rate was primarily the center gas utilization rate,and exhibited a positive correlation with no center offset degree;when the percentage of gas flow center without offset was below 50% but the sum of the percentage of gas flow center without offset and that of gas flow center with small offset exceeded 86%,the gas utilization rate depended on both the center and the edges,and was primarily the edge gas utilization rate.The method proposed was able to accurately and effectively recognize gas flow center distribution state and the relationship between it and gas utilization rate,providing evidence in favor of on-line blast furnace control. 展开更多
关键词 infrared image processing gas flow center recognition gas utilization rate fuzzy C-means clustering
原文传递
Intelligent Fusion of Infrared and Visible Image Data Based on Convolutional Sparse Representation and Improved Pulse-Coupled Neural Network 被引量:3
16
作者 Jingming Xia Yi Lu +1 位作者 Ling Tan Ping Jiang 《Computers, Materials & Continua》 SCIE EI 2021年第4期613-624,共12页
Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion im... Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion images have disadvantages such as blurred edges,low contrast,and loss of details.Based on convolution sparse representation and improved pulse-coupled neural network this paper proposes an image fusion algorithm that decompose the source images into high-frequency and low-frequency subbands by non-subsampled Shearlet Transform(NSST).Furthermore,the low-frequency subbands were fused by convolutional sparse representation(CSR),and the high-frequency subbands were fused by an improved pulse coupled neural network(IPCNN)algorithm,which can effectively solve the problem of difficulty in setting parameters of the traditional PCNN algorithm,improving the performance of sparse representation with details injection.The result reveals that the proposed method in this paper has more advantages than the existing mainstream fusion algorithms in terms of visual effects and objective indicators. 展开更多
关键词 image fusion infrared image visible light image non-downsampling shear wave transform improved PCNN convolutional sparse representation
下载PDF
Fusion of the low-light-level visible and infrared images for night-vision context enhancement 被引量:4
17
作者 朱进 金伟其 +2 位作者 李力 韩正昊 王霞 《Chinese Optics Letters》 SCIE EI CAS CSCD 2018年第1期90-95,共6页
For better night-vision applications using the low-light-level visible and infrared imaging, a fusion framework for night-vision context enhancement(FNCE) method is proposed. An adaptive brightness stretching method... For better night-vision applications using the low-light-level visible and infrared imaging, a fusion framework for night-vision context enhancement(FNCE) method is proposed. An adaptive brightness stretching method is first proposed for enhancing the visible image. Then, a hybrid multi-scale decomposition with edge-preserving filtering is proposed to decompose the source images. Finally, the fused result is obtained via a combination of the decomposed images in three different rules. Experimental results demonstrate that the FNCE method has better performance on the details(edges), the contrast, the sharpness, and the human visual perception. Therefore,better results for the night-vision context enhancement can be achieved. 展开更多
关键词 Fusion of the low-light-level visible and infrared images for night-vision context enhancement
原文传递
Emotion recognition from thermal infrared images using deep Boltzmann machine 被引量:1
18
作者 Shangfei WANG Menghua HE +2 位作者 Zhen GAO Shan HE Qiang JI 《Frontiers of Computer Science》 SCIE EI CSCD 2014年第4期609-618,共10页
Facial expression and emotion recognition from thermal infrared images has attracted more and more attentions in recent years. However, the features adopted in current work are either temperature statistical parameter... Facial expression and emotion recognition from thermal infrared images has attracted more and more attentions in recent years. However, the features adopted in current work are either temperature statistical parameters extracted from the facial regions of interest or several hand-crafted features that are commonly used in visible spectrum. Till now there are no image features specially designed for thermal infrared images. In this paper, we propose using the deep Boltzmann machine to learn thermal features for emotion recognition from thermal infrared facial images. First, the face is located and normalized from the thermal infrared im- ages. Then, a deep Boltzmann machine model composed of two layers is trained. The parameters of the deep Boltzmann machine model are further fine-tuned for emotion recognition after pre-tralning of feature learning. Comparative experimental results on the NVIE database demonstrate that our approach outperforms other approaches using temperature statistic features or hand-crafted features borrowed from visible domain. The learned features from the forehead, eye, and mouth are more effective for discriminating valence dimension of emotion than other facial areas. In addition, our study shows that adding unlabeled data from other database during training can also improve feature learning performance. 展开更多
关键词 emotion recognition thermal infrared images deep Boltzmann machine
原文传递
Sub-Regional Infrared-Visible Image Fusion Using Multi-Scale Transformation 被引量:1
19
作者 Yexin Liu Ben Xu +2 位作者 Mengmeng Zhang Wei Li Ran Tao 《Journal of Beijing Institute of Technology》 EI CAS 2022年第6期535-550,共16页
Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhanc... Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhancement and visual improvement.To deal with these problems,a sub-regional infrared-visible image fusion method(SRF)is proposed.First,morphology and threshold segmentation is applied to extract targets interested in infrared images.Second,the infrared back-ground is reconstructed based on extracted targets and the visible image.Finally,target and back-ground regions are fused using a multi-scale transform.Experimental results are obtained using public data for comparison and evaluation,which demonstrate that the proposed SRF has poten-tial benefits over other methods. 展开更多
关键词 image fusion infrared image visible image multi-scale transform
下载PDF
Infrared image enhancement based on adaptive weighted guided filter
20
作者 Lu Ying Huang Shiqi +1 位作者 Wang Wenqing Sun Ke 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第2期73-84,共12页
The physical principle of infrared imaging leads to the low contrast of the whole image,the blurring of contour and edge details,and it is also sensitive to noise.To improve the quality of infrared image and visual ef... The physical principle of infrared imaging leads to the low contrast of the whole image,the blurring of contour and edge details,and it is also sensitive to noise.To improve the quality of infrared image and visual effect,an adaptive weighted guided filter(AWGF) for infrared image enhancement algorithm was proposed.The core idea of AWGF algorithm is to propose an adaptive strategy to update the weights of guided filter(GF) parameters,which not only improves the accuracy of regularization parameter estimation in GF theory,but also achieves the purpose of removing infrared image noise and improving its detail contrast.A large number of real infrared images were used to verify AWGF algorithm,and good experimental results were obtained.Compared with other guided filtering algorithms,the halo phenomenon at the edge of infrared images processed by the AWGF algorithm is significantly avoided,and the evaluation parameter values of information entropy(IE),average gradient(AG),and moment of inertia(MI)are relatively high.This shows that the quality of infrared image processed by the AWGF algorithm is better. 展开更多
关键词 infrared image guided filter(GF) adaptive weight image enhancement regularization parameter
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部