To address the problems about the difficulty in accurate recognition of distribution features of gas flow center at blast furnace throat and determine the relationship between gas flow center distribution and gas util...To address the problems about the difficulty in accurate recognition of distribution features of gas flow center at blast furnace throat and determine the relationship between gas flow center distribution and gas utilization rate,a method for recognizing distribution features of blast furnace gas flow center was proposed based on infrared image processing,and distribution features of blast furnace gas flow center and corresponding gas utilization rates were categorized by using fuzzy C-means clustering and statistical methods.A concept of gas flow center offset was introduced.The results showed that,when the percentage of gas flow center without offset exceeded 85%,the average blast furnace gas utilization rate was as high as 41%;when the percentage of gas flow center without offset exceeded50%,the gas utilization rate was primarily the center gas utilization rate,and exhibited a positive correlation with no center offset degree;when the percentage of gas flow center without offset was below 50% but the sum of the percentage of gas flow center without offset and that of gas flow center with small offset exceeded 86%,the gas utilization rate depended on both the center and the edges,and was primarily the edge gas utilization rate.The method proposed was able to accurately and effectively recognize gas flow center distribution state and the relationship between it and gas utilization rate,providing evidence in favor of on-line blast furnace control.展开更多
To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation f...To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.展开更多
The digital contour enhancement techniques of infrared image are discussed. Emphasis is laid the thermal spread compensation method. On the basis of describing the theory of the method, a model is suggested. The concr...The digital contour enhancement techniques of infrared image are discussed. Emphasis is laid the thermal spread compensation method. On the basis of describing the theory of the method, a model is suggested. The concrete project based on the model for realizing digital contour enhancement of the infrared thermal image is put forward, and some test results are shown.展开更多
The rise of urban traffic flow highlights the growing importance of traffic safety.In order to reduce the occurrence rate of traffic accidents,and improve front vision information of vehicle drivers,the method to impr...The rise of urban traffic flow highlights the growing importance of traffic safety.In order to reduce the occurrence rate of traffic accidents,and improve front vision information of vehicle drivers,the method to improve visual information of the vehicle driver in low visibility conditions is put forward based on infrared and visible image fusion technique.The wavelet image confusion algorithm is adopted to decompose the image into low-frequency approximation components and high-frequency detail components.Low-frequency component contains information representing gray value differences.High-frequency component contains the detail information of the image,which is frequently represented by gray standard deviation to assess image quality.To extract feature information of low-frequency component and high-frequency component with different emphases,different fusion operators are used separately by low-frequency and high-frequency components.In the processing of low-frequency component,the fusion rule of weighted regional energy proportion is adopted to improve the brightness of the image,and the fusion rule of weighted regional proportion of standard deviation is used in all the three high-frequency components to enhance the image contrast.The experiments on image fusion of infrared and visible light demonstrate that this image fusion method can effectively improve the image brightness and contrast,and it is suitable for vision enhancement of the low-visibility images.展开更多
Body temperature is an important physiological indicator in the whole process of pig breeding.Temperature measurement is also an effective means to assist in disease diagnosis and pig health monitoring.In the conventi...Body temperature is an important physiological indicator in the whole process of pig breeding.Temperature measurement is also an effective means to assist in disease diagnosis and pig health monitoring.In the conventional method of measuring body temperature,a mercury column is used to obtain the rectal temperature.The operation of thismethod is complicated and requires a large amount of labor.This kind of temperature measurement method is contact and canmake the pig stressed,which is disadvantageous for the healthy growth of pigs.Therefore,rectal temperaturemeasurement no longer meets the needs of the large-scale pig industry in China's welfare agriculture.In recent years,the emerging pig body temperature detection technologies are electronic temperaturemeasurement technology,infrared temperature measurement technology and so on.Infrared temperature measurement technology has been the main means of measuring the temperature of pig body surface with its advantages of non-contact,long distance and real-time.At present,infrared temperature measurement technology and infrared image processing technology used in pig breeding are still in the exploration stage.Nowadays,the infrared temperature measurement equipment based on point-by-point analysis represented by infrared thermometer and temperature measurement equipment based on full-field analysis represented by infrared thermal imager have been applied to pig breeding industry.These types of temperaturemeasurement are more in line with the needs of the pig breeding industry to transform and upgrade to the automation,in line with the development concept of welfare farming and smart agriculture,and its development prospects are very impressive.展开更多
Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with t...Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with thermal images which were divided into three stages including a full face excavation stage,a staged excavation stage,and an overloading stage.The obtained results were compared with the previously reported results from horizontal,45?,60?,and vertical strata models.Infrared temperature(IRT)for 30°inclined strata model descended with multiple fluctuations during the full-face excavation.For the staged excavation,the excavation damage zone(EDZ)showed enhanced faulting-like strips as compared in the 45?,60?,and vertical models,indicating the intensified stress redistribution occurred in the adjacent rock mass.In contrast,EDZ for the horizontal strata existed in a plastic-formed manner.During the overloading,abnormal features in the thermal images were observed preceding the coalescence of the propagating cracks.The ultimate failure of the model was due primarily to the floor heave and the roof fall.展开更多
基金Item Sponsored by National Natural Science Foundation of China(61263015)
文摘To address the problems about the difficulty in accurate recognition of distribution features of gas flow center at blast furnace throat and determine the relationship between gas flow center distribution and gas utilization rate,a method for recognizing distribution features of blast furnace gas flow center was proposed based on infrared image processing,and distribution features of blast furnace gas flow center and corresponding gas utilization rates were categorized by using fuzzy C-means clustering and statistical methods.A concept of gas flow center offset was introduced.The results showed that,when the percentage of gas flow center without offset exceeded 85%,the average blast furnace gas utilization rate was as high as 41%;when the percentage of gas flow center without offset exceeded50%,the gas utilization rate was primarily the center gas utilization rate,and exhibited a positive correlation with no center offset degree;when the percentage of gas flow center without offset was below 50% but the sum of the percentage of gas flow center without offset and that of gas flow center with small offset exceeded 86%,the gas utilization rate depended on both the center and the edges,and was primarily the edge gas utilization rate.The method proposed was able to accurately and effectively recognize gas flow center distribution state and the relationship between it and gas utilization rate,providing evidence in favor of on-line blast furnace control.
文摘To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.
文摘The digital contour enhancement techniques of infrared image are discussed. Emphasis is laid the thermal spread compensation method. On the basis of describing the theory of the method, a model is suggested. The concrete project based on the model for realizing digital contour enhancement of the infrared thermal image is put forward, and some test results are shown.
基金the Science and Technology Development Program of Beijing Municipal Commission of Education (No.KM201010011002)the National College Students'Scientific Research and Entrepreneurial Action Plan(SJ201401011)
文摘The rise of urban traffic flow highlights the growing importance of traffic safety.In order to reduce the occurrence rate of traffic accidents,and improve front vision information of vehicle drivers,the method to improve visual information of the vehicle driver in low visibility conditions is put forward based on infrared and visible image fusion technique.The wavelet image confusion algorithm is adopted to decompose the image into low-frequency approximation components and high-frequency detail components.Low-frequency component contains information representing gray value differences.High-frequency component contains the detail information of the image,which is frequently represented by gray standard deviation to assess image quality.To extract feature information of low-frequency component and high-frequency component with different emphases,different fusion operators are used separately by low-frequency and high-frequency components.In the processing of low-frequency component,the fusion rule of weighted regional energy proportion is adopted to improve the brightness of the image,and the fusion rule of weighted regional proportion of standard deviation is used in all the three high-frequency components to enhance the image contrast.The experiments on image fusion of infrared and visible light demonstrate that this image fusion method can effectively improve the image brightness and contrast,and it is suitable for vision enhancement of the low-visibility images.
基金This work was supported by National Key Research and Development Program(2017YFD0701601-3)Research Platform Construction Project and Graduate Training Quality Improvement Project(2017YAL009)of Tianjin Agricultural University.
文摘Body temperature is an important physiological indicator in the whole process of pig breeding.Temperature measurement is also an effective means to assist in disease diagnosis and pig health monitoring.In the conventional method of measuring body temperature,a mercury column is used to obtain the rectal temperature.The operation of thismethod is complicated and requires a large amount of labor.This kind of temperature measurement method is contact and canmake the pig stressed,which is disadvantageous for the healthy growth of pigs.Therefore,rectal temperaturemeasurement no longer meets the needs of the large-scale pig industry in China's welfare agriculture.In recent years,the emerging pig body temperature detection technologies are electronic temperaturemeasurement technology,infrared temperature measurement technology and so on.Infrared temperature measurement technology has been the main means of measuring the temperature of pig body surface with its advantages of non-contact,long distance and real-time.At present,infrared temperature measurement technology and infrared image processing technology used in pig breeding are still in the exploration stage.Nowadays,the infrared temperature measurement equipment based on point-by-point analysis represented by infrared thermometer and temperature measurement equipment based on full-field analysis represented by infrared thermal imager have been applied to pig breeding industry.These types of temperaturemeasurement are more in line with the needs of the pig breeding industry to transform and upgrade to the automation,in line with the development concept of welfare farming and smart agriculture,and its development prospects are very impressive.
基金supported by the National Key Research and Development Plan of China (Grant No. 2016YFC0600901)the National Natural Science Foundation of China (Grant Nos. 51374214, 51134005 & 51574248)+1 种基金the Special Fund of Basic Research and Operating of China University of Mining & Technology, Beijing (Grant No. 2009QL03)the State Scholarship Fund of China
文摘Large-scale physical model test of 30°inclined strata was conducted to investigate the damage mechanisms during the excavation and overloading using infrared detection.The experiment results were presented with thermal images which were divided into three stages including a full face excavation stage,a staged excavation stage,and an overloading stage.The obtained results were compared with the previously reported results from horizontal,45?,60?,and vertical strata models.Infrared temperature(IRT)for 30°inclined strata model descended with multiple fluctuations during the full-face excavation.For the staged excavation,the excavation damage zone(EDZ)showed enhanced faulting-like strips as compared in the 45?,60?,and vertical models,indicating the intensified stress redistribution occurred in the adjacent rock mass.In contrast,EDZ for the horizontal strata existed in a plastic-formed manner.During the overloading,abnormal features in the thermal images were observed preceding the coalescence of the propagating cracks.The ultimate failure of the model was due primarily to the floor heave and the roof fall.