The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the ...The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.展开更多
Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been ...Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been studied under potentiostatic conditions by in situ FTIR spectroscopy in attenuated-total-reflection con guration and di erential electro-chemical mass spectrometry under controlled flow conditions. Results reveal that (i) CO is the only methanol-related adsorbate observed by IR spectroscopy at all the Pt and PtRu electrodes examined at potentials from 0.3 V to 0.6 V (vs. RHE); (ii) at Pt0.56Ru0.44, two IR bands, one from CO adsorbed at Ru islands and the other from COL at Pt substrate are detected, while at other electrodes, only a single band for COL adsorbed at Pt is observed; (iii) MOR activity decreases in the order of Pt0.73Ru0.27〉Pt0.56Ru0.44〉Pt0.83Ru0.17〉Pt; (iv) at 0.5 V, MOR at Pt0.73Ru0.27 reaches a current e ciency of 50% for CO2 production, the turn-over frequency from CH3OH to CO2 is ca. 0.1 molecule/(site sec). Suggestions for further improving of PtRu catalysts for MOR are provided.展开更多
Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability ...Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability and large monitoring error,of the existing underground coal fire monitoring technology,a novel monitoring system based on non-dispersive infrared(NDIR)spectroscopy is developed.In this study,first,the measurement principle of NDIR sensor,the gas concentration calculation and its temperature compensation algorithms were expounded.Next,taking CO and CH_(4) as examples,the liner correlation coefficients of absorbance and the temperature correction factors of the two indicator gases were calculated,and then the errors of concentration measurement for CO,CO_(2),CH_(4) and C_(2)H_(4) were further analyzed.The results disclose that the designed NDIR sensors can satisfy the requirements of industrial standards for monitoring the indicator gases for coal fire hazards.For the established NDIR-based monitoring system,the NDIRbased spectrum analyzer and its auxiliary equipment boast intrinsically safe and explosion-proof performances and can achieve real-time and in-situ detection of indicator gases when installed close to the coal fire risk area underground.Furthermore,a field application of the NDIR-based monitoring system in a coal mine shows that the NDIR-based spectrum analyzer has a permissible difference from the chromatography in measuring the concentrations of various indicator gases.Besides,the advantages of high accuracy,quick analysis and excellent security of the NDIR-based monitoring system have promoted its application in many coal mines.展开更多
AIM: To evaluate the reproducibility of a modified 13^C breath test-based measurement of solid phase gastric emptying (GE) within the frames of a simple-repeated measure study protocol. METHODS: Twelve healthy sub...AIM: To evaluate the reproducibility of a modified 13^C breath test-based measurement of solid phase gastric emptying (GE) within the frames of a simple-repeated measure study protocol. METHODS: Twelve healthy subjects (6 females and 6 males, mean age 24.9+0.7 years) were recruited to undergo three identical GE examinations. In six subjects the first two examinations were performed 2 d apart, and the third session was carried out at a median interval of 19.5 d (range 18 - 20 d) from the second one. In another six subjects the first two measurements were taken 20 d apart (median, range: 17-23 d), whereas the third session took place 2 d after the second one. Probes of expiratory air collected before and during six hours after intake of a solid meal (378 kcal) labelled with 75 μL (68 mg) 13^C-octanoic acid, were measured for 13^CO2 enrichment with the nondispersive isotopeselective infrared spectrometry NDIRS apparatus. RESULTS: Taking coefficients of variation for paired examinations into account, the short-term reproducibility of the GE measurement was slightly but not significantly better than the medium-term one: 7.7% and 11.2% for the lag phase (T-Lag), 7.3% and 10.9% for the gastric half emptying time (T1/2). The least differences in GE parameters detectable at P= 0.05 level in the 12 paired examinations were 9.6 and 15.6 min for T-Lag, 11.6 and 19.7 min for T1/2 by a two-day or two to three-week time gap, respectively CONCLUSION: The low-cost modification of the breath test involving a lower dose of 13^C-octanoic acid and NDIRS, renders good short- and medium-term reproducibility, as well as sensitivity of the measurement of gastric emptying of solids.展开更多
To rapidly determine the pollution extent of wastewater, the calibration models were established for deter-mination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater by partial least squares and nea...To rapidly determine the pollution extent of wastewater, the calibration models were established for deter-mination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater by partial least squares and near infrared spectrometry of 120 samples. Spectral data preprocessing and outliers’ diagnosis were also discussed. Correlation coefficients of the models were 0.9542 and 0.9652, and the root mean square error of prediction (RMSEP) were 25.24 mg?L-1 and 12.13 mg?L-1 in the predicted range of 28.40~528.0 mg?L-1 and 16.0~305.2 mg?L-1 for Chemical Oxygen Demand and Biological Oxygen Demand, respectively. By statistical significance test, the results of determination were compared with those of stan-dard methods with no significant difference at 0.05 level. The method has been applied to simultaneous de-termination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater with satisfactory results.展开更多
To obtain excellent performance optical fiber couplers, the structural difference of SiO2 in couplers with different manufacturing techniques was investigated. With 740-FT-IR infrared spectrometric analyzer, the infra...To obtain excellent performance optical fiber couplers, the structural difference of SiO2 in couplers with different manufacturing techniques was investigated. With 740-FT-IR infrared spectrometric analyzer, the infrared absorption spectrum of SiO2 in couplers at different drawing velocities was measured, and two characteristic peaks in the wavenumber range of 6502000 cm-1 were observed. One characteristic peak is at about 943 cm-1, which is (attributed) to Si—O—Si bond asymmetric stretching vibration, the other is at about 773 cm-1, which is attributed to (Si—O—Si) bond symmetric stretching vibration. From the infrared spectrum, it is found that the intensity and wavenumber of the characteristic peaks are related to the manufacturing technique of couplers. The characteristic peak at (about) 943 cm-1 becomes steeper when increasing the drawing velocity. At the drawing velocity of 150 μm/s, the distance between the two characteristic peaks is maximum, and then the optical fiber coupler has excellent performance, indicating that the performance of the optical fiber coupler has a close relationship with the wavenumber of the two characteristic peaks.展开更多
This experiment studies on the used infrared spectroscopy to establish technology methods for liquor identification methods, as well as offers the science data for establishment of the fingerprint in white spirit. The...This experiment studies on the used infrared spectroscopy to establish technology methods for liquor identification methods, as well as offers the science data for establishment of the fingerprint in white spirit. The results have shown that using near-infrared spectroscopy analysis of liquor has the obvious features such as strong specificity, good reproducibility, simple operation, and finally confirmed that it is an authentic and ideal method for identification in white spirit.展开更多
This paper presents a new wireless system for the measurement of CO2 gas concentration for indoor and outdoor purposes based on low cost Non Dispersive Infrared sensors. The system has been implemented on a printed ci...This paper presents a new wireless system for the measurement of CO2 gas concentration for indoor and outdoor purposes based on low cost Non Dispersive Infrared sensors. The system has been implemented on a printed circuit board in order to obtain different aspects of the air pollution. Some experiments were achieved to evaluate the total system combined with an android application on a smartphone. Different tests were realized in a closed room nearly filled with students and also directly while driving on the road. Good results were obtained allowing a future use for air pollution mapping using numerous amounts of sensors inside vehicles.展开更多
An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging f...An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging from the entire midcourse process. The proposed framework includes three steps, target characteristic modeling, motion modeling, and imaging modeling. In imaging modeling, the staring focal plane is taken into account due to its wide employment. In order to obtain IR images of high fidelity, especially that the fluctuation of the target signal-to-noise ratio (SNR) is reasonably similar to the actual one, this paper proposes an improved IR imaging simulation method. The proposed method considers two critical factors of the pixel plane, occupy-empty ratio and defect elements, which affect the imaging of targets markedly but are neglected in previous work. Finally, the IR image sequence of high fidelity is obtained. And the correlative parameters of simulation can be set according to the given scene. Thus the generated images can satisfy the needs of algorithms validation for tracking and recognition.展开更多
Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregul...Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregular or the background is complex. In this paper, we propose a pixel-level local contrast measure(PLLCM), which can subdivide small targets and backgrounds at pixel level simultaneously.With pixel-level segmentation, the difference between the target and the background becomes more obvious, which helps to improve the detection performance. First, we design a multiscale sliding window to quickly extract candidate target pixels. Then, a local window based on random walker(RW) is designed for pixel-level target segmentation. After that, PLLCM incorporating probability weights and scale constraints is proposed to accurately measure local contrast and suppress various types of background interference. Finally, an adaptive threshold operation is applied to separate the target from the PLLCM enhanced map. Experimental results show that the proposed method has a higher detection rate and a lower false alarm rate than the baseline algorithms, while achieving a high speed.展开更多
The dynamic characteristics related to micro-motions, such as mechanical vibration or rotation, play an essential role in classifying and recognizing ballistic targets in the midcourse, and recent researches explore w...The dynamic characteristics related to micro-motions, such as mechanical vibration or rotation, play an essential role in classifying and recognizing ballistic targets in the midcourse, and recent researches explore ways of extracting the micro-motion features from radar signals of ballistic targets. In this paper, we focus on how to investigate the micro-motion dynamic characteristics of the ballistic targets from the signals based on infrared (IR) detection, which is mainly achieved by analyzing the periodic fluctuation characteristics of the target IR irradiance intensity signatures. Simulation experiments demonstrate that the periodic characteristics of IR signatures can be used to distinguish different micro motion types and estimate related parameters. Consequently, this is possible to determine the micro-motion dynamics of ballistic targets based on IR detection.展开更多
The infrared multiphoton dissociation(IRMPD)spectrum of the protonated heterodimer of Pro Phe H+,in the range of 2700-3700 cm^-1,has been obtained with a Fourier-transform ion cyclotron mass spectrometer combined with...The infrared multiphoton dissociation(IRMPD)spectrum of the protonated heterodimer of Pro Phe H+,in the range of 2700-3700 cm^-1,has been obtained with a Fourier-transform ion cyclotron mass spectrometer combined with an IR OPO laser.The experimental spectrum shows one peak at 3565 cm^-1 corresponding to the free carboxyl O-H stretching vibration,and two broad peaks centered at 2935 and 3195 cm^-1.Theoretical calculations were performed on the level of M062 X/6-311++G(d,p).Results show that the most stable isomer is characterized by a charge-solvated structure in which the proton is bound to the unit of proline.Its predicted spectrum is in good agreement with the experimental one,although the coexistence of salt-bridged structures cannot be entirely excluded.展开更多
A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system...A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a=19.1921(5), b=18.6931(6), c=9.3821(3) A° β=104.8020(11)°, V=3254.22(17)A°^3 C50H51Mo8N10NaO30, Mr=2062.52, Z=2, F(000)=2016, μ=1.591 mm^-1 and Dc=2.105 g/cm^3. The final R=0.0283 and wR=0.0912 for 3118 observed reflections (I〉20(I)). Compound 1 contains the β-[Mo8O26]^4-anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[MosO26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]^3- blocks are surrounded by protonized 4,4'-bpy cations, 4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.展开更多
The ρ(NH2) infrared(IR) frequencies and the corresponding full width at half maximum(FWHM) values for(CH3)2 NH2 FeⅢ M Ⅱ(HCOO)6(DMFe M, M = Ni, Zn, Cu, Fe, and Mg) are analyzed at various temperatures by using the e...The ρ(NH2) infrared(IR) frequencies and the corresponding full width at half maximum(FWHM) values for(CH3)2 NH2 FeⅢ M Ⅱ(HCOO)6(DMFe M, M = Ni, Zn, Cu, Fe, and Mg) are analyzed at various temperatures by using the experimental data from the literature. For the analysis of the IR frequencies of the ρ(NH2) mode which is associated with the structural phase transitions in those metal structures, the temperature dependence of the mode frequency is assumed as an order parameter and the IR frequencies are calculated by using the molecular field theory. Also, the temperature dependence of the IR frequencies and of the damping constant as calculated from the models of pseudospin(dynamic disorder of dimethylammonium(DMA+) cations)–phonon coupling(PS) and of the energy fluctuation(EF), is fitted to the observed data for the wavenumber and FWHM of the ρ(NH2) IR mode of the niccolites studied here. We find that the observed behavior of the IR frequencies and the FWHM of this mode can be described adequately by the models studied for the crystalline structures of interest. This method of calculating the frequencies(IR and Raman) and FWHM of modes which are responsible for the phase transitions can also be applied to some other metal organic frameworks.展开更多
The authentication of milk requires the use of sophisticated and expensive analytical techniques. There is a huge need for reliable and cheap analytical technologies for use as fast and effective screening methods. Th...The authentication of milk requires the use of sophisticated and expensive analytical techniques. There is a huge need for reliable and cheap analytical technologies for use as fast and effective screening methods. This paper proposes the use of myristic acid in the authentication of cow, mare, camel and goat milk, using near infrared spectrometry. Comparison has been made with traditional gas chromatography methods, so that both methods can be used in the authentication of different types of dairy products.展开更多
Sol-gel titania films were deposited on 316L stainless steel using titanium isopropoxide as a chemical precursor. Dip-coating was performed at withdrawal speeds of 6 mm/min, 30 mm/min, and 60 mm/min. Deposited gel fil...Sol-gel titania films were deposited on 316L stainless steel using titanium isopropoxide as a chemical precursor. Dip-coating was performed at withdrawal speeds of 6 mm/min, 30 mm/min, and 60 mm/min. Deposited gel films were heat treated in air at 80℃, 100℃, 300℃, and 400℃. The structural evolution of the coatings was evaluated by infrared reflection-absorption spectroscopy. The influence of the withdrawal speed and the heat treatment temperature on the structure of the films was studied by varying the reflectance incidence angle during the infrared experiments and by Glow Discharge Spectrometry. Free functional groups were detected. The results indicate the formation of bidendate bridging coordination of carboxylic acid to titanium. Titanium atoms can also be pentacoordinated according to the processing conditions of the films. We observed a tendency of increasing amounts of OH groups with decreasing reflectance incidence angle. The film hardness was measured via Knoop microindenation hardness test.展开更多
Light-induced infrared emission spectroscopy (LIRES) is a novel technique that permits to receive high-quality spectra in the mid-infrared region. Low-intensity visible light connected to a highly sensitive FTIR spect...Light-induced infrared emission spectroscopy (LIRES) is a novel technique that permits to receive high-quality spectra in the mid-infrared region. Low-intensity visible light connected to a highly sensitive FTIR spectrometer is more advantageous for studying any samples, including biological samples without any damage. This technique permits obtaining unique information on the molecule structure via vibrational excitation fundamental frequencies, overtones, and combination modes. It also enables a direct observation of vibrational radiation transitions in vibrationally excited molecules as well as the channels of vibration energy redistribution, which is not allowed with any other method. In this work, the LIRES is being tested as a technique for studying of vibrationally-excited molecules of carbon tetrachloride and benzene in the liquid phase. On the other hand, using transparent liquids, we had tried to understand some of the physical phenomena that can drive emission in mid-IR. The characteristics of the infrared emission of both liquid species produced by different wavelength radiation from various types of light systems (100 - watt Xe-lamp and Nd:YAG laser;lambda = 1064 nm (8 mW) and lambda = 532 nm (4 mW)) are presented. We demonstrated that the IR-signal, as well as spectral properties of carbon tetrachloride and benzene, was dependent on the wavelength and power of excitation beam. Results obtained with different light sources show that the visible light produces a nonlinear IR-emission signal in transparent liquids. We believe that the visible light is the source of the nonlinear response and is producing the vibration excitation as well as photostimulated transformations of the molecules possessing the high activity for the nonlinear response.展开更多
基金supported by the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds for the Central Universities(No.2021ZDPY0211)+2 种基金the Graduate Innovation Program of China University of Mining and Technology(No.2023WLKXJ046)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2811)the Project of Liaoning Provincial Department of Education(No.JYTMS20231458).
文摘The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.
文摘Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been studied under potentiostatic conditions by in situ FTIR spectroscopy in attenuated-total-reflection con guration and di erential electro-chemical mass spectrometry under controlled flow conditions. Results reveal that (i) CO is the only methanol-related adsorbate observed by IR spectroscopy at all the Pt and PtRu electrodes examined at potentials from 0.3 V to 0.6 V (vs. RHE); (ii) at Pt0.56Ru0.44, two IR bands, one from CO adsorbed at Ru islands and the other from COL at Pt substrate are detected, while at other electrodes, only a single band for COL adsorbed at Pt is observed; (iii) MOR activity decreases in the order of Pt0.73Ru0.27〉Pt0.56Ru0.44〉Pt0.83Ru0.17〉Pt; (iv) at 0.5 V, MOR at Pt0.73Ru0.27 reaches a current e ciency of 50% for CO2 production, the turn-over frequency from CH3OH to CO2 is ca. 0.1 molecule/(site sec). Suggestions for further improving of PtRu catalysts for MOR are provided.
基金Project(2021MD703848) supported by the China Postdoctoral Science FoundationProjects(52174229, 52174230)supported by the National Natural Science Foundation of China+1 种基金Project(2021-KF-23-04) supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2020CXNL10) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability and large monitoring error,of the existing underground coal fire monitoring technology,a novel monitoring system based on non-dispersive infrared(NDIR)spectroscopy is developed.In this study,first,the measurement principle of NDIR sensor,the gas concentration calculation and its temperature compensation algorithms were expounded.Next,taking CO and CH_(4) as examples,the liner correlation coefficients of absorbance and the temperature correction factors of the two indicator gases were calculated,and then the errors of concentration measurement for CO,CO_(2),CH_(4) and C_(2)H_(4) were further analyzed.The results disclose that the designed NDIR sensors can satisfy the requirements of industrial standards for monitoring the indicator gases for coal fire hazards.For the established NDIR-based monitoring system,the NDIRbased spectrum analyzer and its auxiliary equipment boast intrinsically safe and explosion-proof performances and can achieve real-time and in-situ detection of indicator gases when installed close to the coal fire risk area underground.Furthermore,a field application of the NDIR-based monitoring system in a coal mine shows that the NDIR-based spectrum analyzer has a permissible difference from the chromatography in measuring the concentrations of various indicator gases.Besides,the advantages of high accuracy,quick analysis and excellent security of the NDIR-based monitoring system have promoted its application in many coal mines.
基金Supported by a research grant(3 P05D 054 24)from the Ministry of Scientific Research and Information Technology(formerly:State Committee For Scientific Research)of the Republic of Poland-contract #0617/P05/2003/24
文摘AIM: To evaluate the reproducibility of a modified 13^C breath test-based measurement of solid phase gastric emptying (GE) within the frames of a simple-repeated measure study protocol. METHODS: Twelve healthy subjects (6 females and 6 males, mean age 24.9+0.7 years) were recruited to undergo three identical GE examinations. In six subjects the first two examinations were performed 2 d apart, and the third session was carried out at a median interval of 19.5 d (range 18 - 20 d) from the second one. In another six subjects the first two measurements were taken 20 d apart (median, range: 17-23 d), whereas the third session took place 2 d after the second one. Probes of expiratory air collected before and during six hours after intake of a solid meal (378 kcal) labelled with 75 μL (68 mg) 13^C-octanoic acid, were measured for 13^CO2 enrichment with the nondispersive isotopeselective infrared spectrometry NDIRS apparatus. RESULTS: Taking coefficients of variation for paired examinations into account, the short-term reproducibility of the GE measurement was slightly but not significantly better than the medium-term one: 7.7% and 11.2% for the lag phase (T-Lag), 7.3% and 10.9% for the gastric half emptying time (T1/2). The least differences in GE parameters detectable at P= 0.05 level in the 12 paired examinations were 9.6 and 15.6 min for T-Lag, 11.6 and 19.7 min for T1/2 by a two-day or two to three-week time gap, respectively CONCLUSION: The low-cost modification of the breath test involving a lower dose of 13^C-octanoic acid and NDIRS, renders good short- and medium-term reproducibility, as well as sensitivity of the measurement of gastric emptying of solids.
文摘To rapidly determine the pollution extent of wastewater, the calibration models were established for deter-mination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater by partial least squares and near infrared spectrometry of 120 samples. Spectral data preprocessing and outliers’ diagnosis were also discussed. Correlation coefficients of the models were 0.9542 and 0.9652, and the root mean square error of prediction (RMSEP) were 25.24 mg?L-1 and 12.13 mg?L-1 in the predicted range of 28.40~528.0 mg?L-1 and 16.0~305.2 mg?L-1 for Chemical Oxygen Demand and Biological Oxygen Demand, respectively. By statistical significance test, the results of determination were compared with those of stan-dard methods with no significant difference at 0.05 level. The method has been applied to simultaneous de-termination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater with satisfactory results.
文摘To obtain excellent performance optical fiber couplers, the structural difference of SiO2 in couplers with different manufacturing techniques was investigated. With 740-FT-IR infrared spectrometric analyzer, the infrared absorption spectrum of SiO2 in couplers at different drawing velocities was measured, and two characteristic peaks in the wavenumber range of 6502000 cm-1 were observed. One characteristic peak is at about 943 cm-1, which is (attributed) to Si—O—Si bond asymmetric stretching vibration, the other is at about 773 cm-1, which is attributed to (Si—O—Si) bond symmetric stretching vibration. From the infrared spectrum, it is found that the intensity and wavenumber of the characteristic peaks are related to the manufacturing technique of couplers. The characteristic peak at (about) 943 cm-1 becomes steeper when increasing the drawing velocity. At the drawing velocity of 150 μm/s, the distance between the two characteristic peaks is maximum, and then the optical fiber coupler has excellent performance, indicating that the performance of the optical fiber coupler has a close relationship with the wavenumber of the two characteristic peaks.
文摘This experiment studies on the used infrared spectroscopy to establish technology methods for liquor identification methods, as well as offers the science data for establishment of the fingerprint in white spirit. The results have shown that using near-infrared spectroscopy analysis of liquor has the obvious features such as strong specificity, good reproducibility, simple operation, and finally confirmed that it is an authentic and ideal method for identification in white spirit.
文摘This paper presents a new wireless system for the measurement of CO2 gas concentration for indoor and outdoor purposes based on low cost Non Dispersive Infrared sensors. The system has been implemented on a printed circuit board in order to obtain different aspects of the air pollution. Some experiments were achieved to evaluate the total system combined with an android application on a smartphone. Different tests were realized in a closed room nearly filled with students and also directly while driving on the road. Good results were obtained allowing a future use for air pollution mapping using numerous amounts of sensors inside vehicles.
文摘An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging from the entire midcourse process. The proposed framework includes three steps, target characteristic modeling, motion modeling, and imaging modeling. In imaging modeling, the staring focal plane is taken into account due to its wide employment. In order to obtain IR images of high fidelity, especially that the fluctuation of the target signal-to-noise ratio (SNR) is reasonably similar to the actual one, this paper proposes an improved IR imaging simulation method. The proposed method considers two critical factors of the pixel plane, occupy-empty ratio and defect elements, which affect the imaging of targets markedly but are neglected in previous work. Finally, the IR image sequence of high fidelity is obtained. And the correlative parameters of simulation can be set according to the given scene. Thus the generated images can satisfy the needs of algorithms validation for tracking and recognition.
基金supported by the National Natural Science Foundation of China under Grant 62003247, Grant 62075169, and Grant 62061160370。
文摘Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregular or the background is complex. In this paper, we propose a pixel-level local contrast measure(PLLCM), which can subdivide small targets and backgrounds at pixel level simultaneously.With pixel-level segmentation, the difference between the target and the background becomes more obvious, which helps to improve the detection performance. First, we design a multiscale sliding window to quickly extract candidate target pixels. Then, a local window based on random walker(RW) is designed for pixel-level target segmentation. After that, PLLCM incorporating probability weights and scale constraints is proposed to accurately measure local contrast and suppress various types of background interference. Finally, an adaptive threshold operation is applied to separate the target from the PLLCM enhanced map. Experimental results show that the proposed method has a higher detection rate and a lower false alarm rate than the baseline algorithms, while achieving a high speed.
文摘The dynamic characteristics related to micro-motions, such as mechanical vibration or rotation, play an essential role in classifying and recognizing ballistic targets in the midcourse, and recent researches explore ways of extracting the micro-motion features from radar signals of ballistic targets. In this paper, we focus on how to investigate the micro-motion dynamic characteristics of the ballistic targets from the signals based on infrared (IR) detection, which is mainly achieved by analyzing the periodic fluctuation characteristics of the target IR irradiance intensity signatures. Simulation experiments demonstrate that the periodic characteristics of IR signatures can be used to distinguish different micro motion types and estimate related parameters. Consequently, this is possible to determine the micro-motion dynamics of ballistic targets based on IR detection.
基金supported by the National Natural Science Foundation of China(No.21627810)the Fundamental Research Funds for the Central Universities,Nankai University(No.63191523)。
文摘The infrared multiphoton dissociation(IRMPD)spectrum of the protonated heterodimer of Pro Phe H+,in the range of 2700-3700 cm^-1,has been obtained with a Fourier-transform ion cyclotron mass spectrometer combined with an IR OPO laser.The experimental spectrum shows one peak at 3565 cm^-1 corresponding to the free carboxyl O-H stretching vibration,and two broad peaks centered at 2935 and 3195 cm^-1.Theoretical calculations were performed on the level of M062 X/6-311++G(d,p).Results show that the most stable isomer is characterized by a charge-solvated structure in which the proton is bound to the unit of proline.Its predicted spectrum is in good agreement with the experimental one,although the coexistence of salt-bridged structures cannot be entirely excluded.
基金This work was supported by the Foundation of Education Committee of Fujian Province (K02028, JB04049), the State Key Laboratory of Structural Chemistry, and Science and Technology Foundation of Fuzhou University
文摘A novel compound, (4,4'-Hbpy)3[NaMo8O26](4,4'-bpy)2(H2O)4 1 (bpy=bipydine), was synthesized by the hydrothermal method. Single-crystal X-ray diffraction shows that compound 1 belongs to the monoclinic system, space group C2/m with a=19.1921(5), b=18.6931(6), c=9.3821(3) A° β=104.8020(11)°, V=3254.22(17)A°^3 C50H51Mo8N10NaO30, Mr=2062.52, Z=2, F(000)=2016, μ=1.591 mm^-1 and Dc=2.105 g/cm^3. The final R=0.0283 and wR=0.0912 for 3118 observed reflections (I〉20(I)). Compound 1 contains the β-[Mo8O26]^4-anion, sodium ion, 4,4'-bpy and lattice crystalline water molecules. The β-[MosO26] units link the sodium ion to form a chain structure. The infinitechains of [Na(Mo8O26)]^3- blocks are surrounded by protonized 4,4'-bpy cations, 4,4'-bpy and lattice crystalline water molecules. The 2D-IR correlation spectroscopy study indicates that the stretching vibrations of Mo=O occur more preferentially due to the thermal effect. The TGA analysis shows that compound 1 has high thermal stability.
文摘The ρ(NH2) infrared(IR) frequencies and the corresponding full width at half maximum(FWHM) values for(CH3)2 NH2 FeⅢ M Ⅱ(HCOO)6(DMFe M, M = Ni, Zn, Cu, Fe, and Mg) are analyzed at various temperatures by using the experimental data from the literature. For the analysis of the IR frequencies of the ρ(NH2) mode which is associated with the structural phase transitions in those metal structures, the temperature dependence of the mode frequency is assumed as an order parameter and the IR frequencies are calculated by using the molecular field theory. Also, the temperature dependence of the IR frequencies and of the damping constant as calculated from the models of pseudospin(dynamic disorder of dimethylammonium(DMA+) cations)–phonon coupling(PS) and of the energy fluctuation(EF), is fitted to the observed data for the wavenumber and FWHM of the ρ(NH2) IR mode of the niccolites studied here. We find that the observed behavior of the IR frequencies and the FWHM of this mode can be described adequately by the models studied for the crystalline structures of interest. This method of calculating the frequencies(IR and Raman) and FWHM of modes which are responsible for the phase transitions can also be applied to some other metal organic frameworks.
文摘The authentication of milk requires the use of sophisticated and expensive analytical techniques. There is a huge need for reliable and cheap analytical technologies for use as fast and effective screening methods. This paper proposes the use of myristic acid in the authentication of cow, mare, camel and goat milk, using near infrared spectrometry. Comparison has been made with traditional gas chromatography methods, so that both methods can be used in the authentication of different types of dairy products.
基金financial support from the Minas Gerais Research Agency(Fapemig),Brazilian Research Agency(CNPq),Brazilian Graduate Agency(CAPES),Minerals and Metallurgy Pole of Excellence of The Minas Gerais State,and The National Institute of Science and Technology on Mineral Resources,Water,and Biodiversity(Acqua).
文摘Sol-gel titania films were deposited on 316L stainless steel using titanium isopropoxide as a chemical precursor. Dip-coating was performed at withdrawal speeds of 6 mm/min, 30 mm/min, and 60 mm/min. Deposited gel films were heat treated in air at 80℃, 100℃, 300℃, and 400℃. The structural evolution of the coatings was evaluated by infrared reflection-absorption spectroscopy. The influence of the withdrawal speed and the heat treatment temperature on the structure of the films was studied by varying the reflectance incidence angle during the infrared experiments and by Glow Discharge Spectrometry. Free functional groups were detected. The results indicate the formation of bidendate bridging coordination of carboxylic acid to titanium. Titanium atoms can also be pentacoordinated according to the processing conditions of the films. We observed a tendency of increasing amounts of OH groups with decreasing reflectance incidence angle. The film hardness was measured via Knoop microindenation hardness test.
文摘Light-induced infrared emission spectroscopy (LIRES) is a novel technique that permits to receive high-quality spectra in the mid-infrared region. Low-intensity visible light connected to a highly sensitive FTIR spectrometer is more advantageous for studying any samples, including biological samples without any damage. This technique permits obtaining unique information on the molecule structure via vibrational excitation fundamental frequencies, overtones, and combination modes. It also enables a direct observation of vibrational radiation transitions in vibrationally excited molecules as well as the channels of vibration energy redistribution, which is not allowed with any other method. In this work, the LIRES is being tested as a technique for studying of vibrationally-excited molecules of carbon tetrachloride and benzene in the liquid phase. On the other hand, using transparent liquids, we had tried to understand some of the physical phenomena that can drive emission in mid-IR. The characteristics of the infrared emission of both liquid species produced by different wavelength radiation from various types of light systems (100 - watt Xe-lamp and Nd:YAG laser;lambda = 1064 nm (8 mW) and lambda = 532 nm (4 mW)) are presented. We demonstrated that the IR-signal, as well as spectral properties of carbon tetrachloride and benzene, was dependent on the wavelength and power of excitation beam. Results obtained with different light sources show that the visible light produces a nonlinear IR-emission signal in transparent liquids. We believe that the visible light is the source of the nonlinear response and is producing the vibration excitation as well as photostimulated transformations of the molecules possessing the high activity for the nonlinear response.