The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic com...The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic compression, dynamic compression experiments using the Hopkinson bar under four groups of strain rates were conducted, and the temperature signals were measured by constructing a transient infrared temperature measurement system. According to stress versus strain data as well as the corresponding temperature data obtained through the experiments, the influences of the strain and the strain rate on the coefficient of plastic work converted to heat were analyzed.The experimental results show that the coefficient of plastic work converted to heat of 7075-T651 aluminum alloy is not a constant at the range of 0.85–1 and is closely related to the strain and the strain rate. The change of internal structure of material under high strain rate reduces its energy storage capacity, and makes almost all plastic work convert into heat.展开更多
An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature res...An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature responses of primary initiation FAE and secondary initiation FAE in real time. And the characteristics of their temperature history curves were compared and analyzed. The results show that the primary initiation FAE has higher explosion temperature and longer duration compared to the secondary initiation FAE.展开更多
Film cooling effectiveness superposition of double-row injection holes on the turbine vane was studied by infrared temperature measurement experiment. The Sellers superposition method and a modified Sellers method wer...Film cooling effectiveness superposition of double-row injection holes on the turbine vane was studied by infrared temperature measurement experiment. The Sellers superposition method and a modified Sellers method were adopted for dustpan-shaped hole and cylindrical hole. Numerical simulations were implemented to analyze the film superposition mechanism. It is found that the Sellers method is more accurate on the suction side than the pressure side. Injection film of the two types of holes exhibits different superposition modes. Cylindrical hole are “blocky-like” superposition. Dustpan-shaped hole are “sheet-like” superposition. The counter-rotating vortex pairs and separation of the film are the main factors affecting the accuracy of Sellers film superposition method. The modified method can significantly improve the superposition prediction accuracy for almost all situations. The modified method reduces superposition errors from 28% to 3% for the cylindrical hole, and from 42% to 13% for the dustpan-shaped hole on the suction side. It reduces superposition errors from 30% to 8% for the cylindrical hole, and from 23% to 15% for the dustpan-shaped hole on the pressure side.展开更多
The thermal characteristics of 808 nm Al Ga As/Ga As laser diodes(LDs) are analyzed via electrical transient measurements and infrared thermography. The temperature rise and thermal resistance are measured at variou...The thermal characteristics of 808 nm Al Ga As/Ga As laser diodes(LDs) are analyzed via electrical transient measurements and infrared thermography. The temperature rise and thermal resistance are measured at various input currents and powers. From the electrical transient measurements, it is found that there is a significant reduction in thermal resistance with increasing power because of the device power conversion efficiency. The component thermal resistance that was obtained from the structure function showed that the total thermal resistance is mainly composed of the thermal resistance of the sub-mount rather than that of the LD chip, and the thermal resistance of the sub-mount decreases with increasing current. The temperature rise values are also measured by infrared thermography and are calibrated based on a reference image, with results that are lower than those determined by electrical transient measurements. The difference in the results is caused by the limited spatial resolution of the measurements and by the signal being captured from the facet rather than from the junction of the laser diode.展开更多
基金supported by the National Nature Science Foundation of China (Grants 11132011 and 11472288)
文摘The plastic work-heat conversion coefficient is one key parameter for studying the work-heat conversion under dynamic deformation of materials. To explore this coefficient of 7075-T651 aluminum alloy under dynamic compression, dynamic compression experiments using the Hopkinson bar under four groups of strain rates were conducted, and the temperature signals were measured by constructing a transient infrared temperature measurement system. According to stress versus strain data as well as the corresponding temperature data obtained through the experiments, the influences of the strain and the strain rate on the coefficient of plastic work converted to heat were analyzed.The experimental results show that the coefficient of plastic work converted to heat of 7075-T651 aluminum alloy is not a constant at the range of 0.85–1 and is closely related to the strain and the strain rate. The change of internal structure of material under high strain rate reduces its energy storage capacity, and makes almost all plastic work convert into heat.
基金Sponsored by the National Natural Science Foundation of China (10772032)
文摘An infrared colorimetric radiation thermometrical system was established based on the theory of optical radiation. The dynamic temperature history of fuel air explosive (FAE) was measured to obtain the temperature responses of primary initiation FAE and secondary initiation FAE in real time. And the characteristics of their temperature history curves were compared and analyzed. The results show that the primary initiation FAE has higher explosion temperature and longer duration compared to the secondary initiation FAE.
基金financial support from the National Science and Technology Major Project(J2019-Ⅲ-0003-0063,2017-Ⅲ-0001-0025)the National Natural Science Foundation of China(No.51936008)。
文摘Film cooling effectiveness superposition of double-row injection holes on the turbine vane was studied by infrared temperature measurement experiment. The Sellers superposition method and a modified Sellers method were adopted for dustpan-shaped hole and cylindrical hole. Numerical simulations were implemented to analyze the film superposition mechanism. It is found that the Sellers method is more accurate on the suction side than the pressure side. Injection film of the two types of holes exhibits different superposition modes. Cylindrical hole are “blocky-like” superposition. Dustpan-shaped hole are “sheet-like” superposition. The counter-rotating vortex pairs and separation of the film are the main factors affecting the accuracy of Sellers film superposition method. The modified method can significantly improve the superposition prediction accuracy for almost all situations. The modified method reduces superposition errors from 28% to 3% for the cylindrical hole, and from 42% to 13% for the dustpan-shaped hole on the suction side. It reduces superposition errors from 30% to 8% for the cylindrical hole, and from 23% to 15% for the dustpan-shaped hole on the pressure side.
基金Project supported by the National Natural Science Foundation of China(Nos.61376077,61201046,61204081)
文摘The thermal characteristics of 808 nm Al Ga As/Ga As laser diodes(LDs) are analyzed via electrical transient measurements and infrared thermography. The temperature rise and thermal resistance are measured at various input currents and powers. From the electrical transient measurements, it is found that there is a significant reduction in thermal resistance with increasing power because of the device power conversion efficiency. The component thermal resistance that was obtained from the structure function showed that the total thermal resistance is mainly composed of the thermal resistance of the sub-mount rather than that of the LD chip, and the thermal resistance of the sub-mount decreases with increasing current. The temperature rise values are also measured by infrared thermography and are calibrated based on a reference image, with results that are lower than those determined by electrical transient measurements. The difference in the results is caused by the limited spatial resolution of the measurements and by the signal being captured from the facet rather than from the junction of the laser diode.