The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion ba...The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents.展开更多
Fundamental studies of the combustion characteristics and the de HCl behavior of a single refuse derived fuel(RDF) pellet were carried out to explain the de HCl phenomena of RDF during fluidized bed combustion and to ...Fundamental studies of the combustion characteristics and the de HCl behavior of a single refuse derived fuel(RDF) pellet were carried out to explain the de HCl phenomena of RDF during fluidized bed combustion and to provide data for the development of high efficiency power generation technology using RDF previously. For further interpreting the devolatilization and the char combustion processes of RDF quantitatively, an unsteady combustion model for single RDF pellet, involving reaction rates, heat transfer and oxygen diffusion in the RDF pellet, was developed. Comparisons of simulation results with experimental data for mass loss of the RDF samples made from municipal solid waste, wood chips and poly propylene when they were heated at 10K/min or put into the furnace under 1?073?K show the verifiability of the model. Using this model, the distributions of the temperature and the reaction ratio along the radius of RDF pellet during the devolatilization process and the char combustion process were presented, and discussion about the inference of heating rate on the combustion characteristics were performed.展开更多
Combustion characteristics of Taixi anthracite admixed with high content of limestone addition were investigated with thermogravimetric analysis. The results show that limestone addition has a little promoting effect ...Combustion characteristics of Taixi anthracite admixed with high content of limestone addition were investigated with thermogravimetric analysis. The results show that limestone addition has a little promoting effect on the ignition of raw coals as a whole. The addition of limestone is found to significantly accelerate the combustion and burnout of raw coals. The higher the sample mass is, the more significant the effect will be. The results also show that the change of limestone proportion between 45%-80% has little effect on ignition temperatures of coal in the blended samples. Increasing limestone content lowers the temperature corresponding to the maximum weight loss. Although higher maximum mass loss rates are observed with higher limestone content, the effect is found not ascribed to changing limestone addition, but to the decrease of absolute coal mass in the sample. The change of limestone proportion has little effect on its burnout temperature. Mechanism analysis indicates that these phenomena result mainly from improved heat conduction due to limestone addition.展开更多
为了理解甲醇/柴油双燃料机的自燃特性并为燃烧计算所需骨架机理提供理论依据,以正庚烷作为柴油替代物,应用快速压缩机对宽广实验条件下甲醇/正庚烷混合燃料的自燃特性进行了研究。实验条件覆盖了甲醇/柴油双燃料机的典型工况。实验研...为了理解甲醇/柴油双燃料机的自燃特性并为燃烧计算所需骨架机理提供理论依据,以正庚烷作为柴油替代物,应用快速压缩机对宽广实验条件下甲醇/正庚烷混合燃料的自燃特性进行了研究。实验条件覆盖了甲醇/柴油双燃料机的典型工况。实验研究结果显示,随着压力升高、甲醇比例减少或当量比增大,混合燃料滞燃期变短。根据实验数据验证了爱尔兰国立大学(National University of Ireland,NUI)的正庚烷详细机理对甲醇/正庚烷的适用性,并利用该机理在CHEMKIN PRO软件中进行了化学动力学分析。结果表明,甲醇与正庚烷竞争羟基(hydroxyl,OH)从而抑制系统氧化过程。敏感性分析结果显示,超氧化氢(HO_(2))反应生成过氧化氢(H_(2)O_(2))是燃烧过程中最敏感的反应,抑制系统氧化过程的进行。本研究可为获得适用于甲醇/柴油双燃料机燃烧计算的骨架机理提供理论依据。展开更多
In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper...In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper, thermogravimetric analysis and a lab scale fluidized bed facility were used as experimental means. The data in two different experimental systems were introduced and compared. It took MSW 3-3.5 min to burn out in FB, but in thermogravimetric analyzer, the time is 20-25 min. It can be concluded that, in general, the behavior of a mixture of waste in TGA can be expressed by simple combination of individual components of the waste mixtures. Only minor deviations from the rule were observed. Yet, in Fluidized Bed, it was found that, for some mixtures, there was interference among the components during fluidized bed combustion.展开更多
The combustion characteristics and kinetics of anthracite,pine sawdust and their blends were investigated under combustion condition by thermogravimetric analysis,respectively.The fractions of pine sawdust in the blen...The combustion characteristics and kinetics of anthracite,pine sawdust and their blends were investigated under combustion condition by thermogravimetric analysis,respectively.The fractions of pine sawdust in the blended samples were set to be 30%,50%,and 80%.The results showed that the ignition and burnout temperatures of pine sawdust were lower and the maximum combustion rate was higher than those of anthracite.With the increase of pine sawdust content,the ignition temperature and burnout temperature of the blends decreased,while the maximum mass loss rate and the combustible index of the blends increased;that is,the comprehensive combustion property became better.The kinetic parameters for the blends combustion under air condition were calculated based on experimental results using Coats-Redfern model.When the pine sawdust content varied in the range of 30%-80%,the combustion processes of these blends could be divided into two stages and the combustion reactions belong to the first-order reaction.The values of apparent activation energy at two individual stages decreased from 68.78to47.28kJ·mol-1 and from 113.53 to 46.43kJ·mol-1,respectively.展开更多
基金supported by the National Natural Science Foundation of China(52106284)the Natural Science Foundation of Hebei Province(B2021507001)support of Project to Promote Innovation in Doctoral Research at CPPU(BSKY202302).
文摘The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents.
文摘Fundamental studies of the combustion characteristics and the de HCl behavior of a single refuse derived fuel(RDF) pellet were carried out to explain the de HCl phenomena of RDF during fluidized bed combustion and to provide data for the development of high efficiency power generation technology using RDF previously. For further interpreting the devolatilization and the char combustion processes of RDF quantitatively, an unsteady combustion model for single RDF pellet, involving reaction rates, heat transfer and oxygen diffusion in the RDF pellet, was developed. Comparisons of simulation results with experimental data for mass loss of the RDF samples made from municipal solid waste, wood chips and poly propylene when they were heated at 10K/min or put into the furnace under 1?073?K show the verifiability of the model. Using this model, the distributions of the temperature and the reaction ratio along the radius of RDF pellet during the devolatilization process and the char combustion process were presented, and discussion about the inference of heating rate on the combustion characteristics were performed.
文摘Combustion characteristics of Taixi anthracite admixed with high content of limestone addition were investigated with thermogravimetric analysis. The results show that limestone addition has a little promoting effect on the ignition of raw coals as a whole. The addition of limestone is found to significantly accelerate the combustion and burnout of raw coals. The higher the sample mass is, the more significant the effect will be. The results also show that the change of limestone proportion between 45%-80% has little effect on ignition temperatures of coal in the blended samples. Increasing limestone content lowers the temperature corresponding to the maximum weight loss. Although higher maximum mass loss rates are observed with higher limestone content, the effect is found not ascribed to changing limestone addition, but to the decrease of absolute coal mass in the sample. The change of limestone proportion has little effect on its burnout temperature. Mechanism analysis indicates that these phenomena result mainly from improved heat conduction due to limestone addition.
文摘为了理解甲醇/柴油双燃料机的自燃特性并为燃烧计算所需骨架机理提供理论依据,以正庚烷作为柴油替代物,应用快速压缩机对宽广实验条件下甲醇/正庚烷混合燃料的自燃特性进行了研究。实验条件覆盖了甲醇/柴油双燃料机的典型工况。实验研究结果显示,随着压力升高、甲醇比例减少或当量比增大,混合燃料滞燃期变短。根据实验数据验证了爱尔兰国立大学(National University of Ireland,NUI)的正庚烷详细机理对甲醇/正庚烷的适用性,并利用该机理在CHEMKIN PRO软件中进行了化学动力学分析。结果表明,甲醇与正庚烷竞争羟基(hydroxyl,OH)从而抑制系统氧化过程。敏感性分析结果显示,超氧化氢(HO_(2))反应生成过氧化氢(H_(2)O_(2))是燃烧过程中最敏感的反应,抑制系统氧化过程的进行。本研究可为获得适用于甲醇/柴油双燃料机燃烧计算的骨架机理提供理论依据。
文摘In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper, thermogravimetric analysis and a lab scale fluidized bed facility were used as experimental means. The data in two different experimental systems were introduced and compared. It took MSW 3-3.5 min to burn out in FB, but in thermogravimetric analyzer, the time is 20-25 min. It can be concluded that, in general, the behavior of a mixture of waste in TGA can be expressed by simple combination of individual components of the waste mixtures. Only minor deviations from the rule were observed. Yet, in Fluidized Bed, it was found that, for some mixtures, there was interference among the components during fluidized bed combustion.
基金Sponsored by Fund of Chongqing Science and Technology of China(cstc2013jcsf20001)
文摘The combustion characteristics and kinetics of anthracite,pine sawdust and their blends were investigated under combustion condition by thermogravimetric analysis,respectively.The fractions of pine sawdust in the blended samples were set to be 30%,50%,and 80%.The results showed that the ignition and burnout temperatures of pine sawdust were lower and the maximum combustion rate was higher than those of anthracite.With the increase of pine sawdust content,the ignition temperature and burnout temperature of the blends decreased,while the maximum mass loss rate and the combustible index of the blends increased;that is,the comprehensive combustion property became better.The kinetic parameters for the blends combustion under air condition were calculated based on experimental results using Coats-Redfern model.When the pine sawdust content varied in the range of 30%-80%,the combustion processes of these blends could be divided into two stages and the combustion reactions belong to the first-order reaction.The values of apparent activation energy at two individual stages decreased from 68.78to47.28kJ·mol-1 and from 113.53 to 46.43kJ·mol-1,respectively.