Five kinds of Al-Zn-Mg-Cu-Zr based alloys with different Sc additions were prepared by ingot metallurgy. The effects of minor Sc on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Zr based alloys were inve...Five kinds of Al-Zn-Mg-Cu-Zr based alloys with different Sc additions were prepared by ingot metallurgy. The effects of minor Sc on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Zr based alloys were investigated using tensile tests, optical microscopy (OM), and transmission electron microscopy (TEM). The results show that the ultimate tensile strength and yield strength are improved by 94 and 110 MPa, respectively, and the elongation to failure remains at a reasonable extent (11.1%) in the Al-Zn-Mg-Cu-Zr based alloy with 0.21 wt.% Sc addition after solution heat treatment at 475°C for 40 min and then aged at 120°C for 24 h. The addition of minor Sc induces the formation of Al3(Sc,Zr) particles, which are highly effective in refining the cast microstructures, retarding recrystallization, and pinning dislocations. The increment of strength is attributed mainly to fine grain strengthening, precipitation strengthening of Al3(Sc,Zr) particles, and substructure strengthening.展开更多
基金supported by the National High-Tech Research and Development Program of China (No. 2006AA03Z523)
文摘Five kinds of Al-Zn-Mg-Cu-Zr based alloys with different Sc additions were prepared by ingot metallurgy. The effects of minor Sc on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Zr based alloys were investigated using tensile tests, optical microscopy (OM), and transmission electron microscopy (TEM). The results show that the ultimate tensile strength and yield strength are improved by 94 and 110 MPa, respectively, and the elongation to failure remains at a reasonable extent (11.1%) in the Al-Zn-Mg-Cu-Zr based alloy with 0.21 wt.% Sc addition after solution heat treatment at 475°C for 40 min and then aged at 120°C for 24 h. The addition of minor Sc induces the formation of Al3(Sc,Zr) particles, which are highly effective in refining the cast microstructures, retarding recrystallization, and pinning dislocations. The increment of strength is attributed mainly to fine grain strengthening, precipitation strengthening of Al3(Sc,Zr) particles, and substructure strengthening.