In order to study the durability behavior of marine reinforced concrete structure suffering from chloride attack, the structural service life is assumed to be divided into three critical stages, which can be character...In order to study the durability behavior of marine reinforced concrete structure suffering from chloride attack, the structural service life is assumed to be divided into three critical stages, which can be characterized by steel corrosion and cover cracking. For each stage, a calculated model used to predict the lifetime is developed. Based on the definition of durability limit state, a probabilistic lifetime model and its time-dependent reliability analytical method are proposed considering the random natures of influencing factors. Then, the probabilistic lifetime prediction models are applied to a bridge pier located in the Hangzhou Bay with Monte Carlo simulation. It is found that the time to corrosion initiation to follows a lognormal distribution, while that the time from corrosion initiation to cover cracking t~ and the time for crack to develop from hairline crack to a limit crack width t2 can be described by Weibull distributions. With the permitted failure probability of 5.0%, it is also observed that the structural durability lifetime mainly depends on the durability life to and that the percentage of participation of the life to to the total service life grows from 61.5% to 83.6% when the cover thickness increases from 40 mm to 80 mm. Therefore, for any part of the marine RC bridge, the lifetime predictions and maintenance efforts should also be directed toward controlling the stage of corrosion initiation induced by chloride ion.展开更多
2D,3D chloride ion concentration at the edge and corner zones were systematically investigated for fly ash concretes made with different cement replacement percentage by fly ash (0%,10%,20%,40%,60%),water to binder ...2D,3D chloride ion concentration at the edge and corner zones were systematically investigated for fly ash concretes made with different cement replacement percentage by fly ash (0%,10%,20%,40%,60%),water to binder ratios (0.3,0.35,0.4),and curing ages (28 d,90 d).An interaction effect caused by 2D and 3D diffusion could obviously be observed through the comparison with 1D testing results.In order to quantify the interaction effect,2D and 3D diffusion interaction coefficients was proposed in this paper.Finally,the changes of 2D and 3D interaction coefficients with the change in the free chloride ion concentration were given.The above research provide an insight into chloride ion attack on the edge and corner reinforcing bars of concrete structures in the field of civil engineering.展开更多
The challenging conditions at which gas turbine engines operate mean that careful management of component temperatures is necessary, in order to ensure component integrity and reasonable service life. Pressurised flow...The challenging conditions at which gas turbine engines operate mean that careful management of component temperatures is necessary, in order to ensure component integrity and reasonable service life. Pressurised flows extracted from the compressor can be used for cooling, sealing and balancing of components throughout the engine. Cooling is typically necessary for some combustor and turbine components, and sealing flows may be needed to exclude high temperature gases. In addition to cooling and sealing requirements, there is also a need to balance thrust loads in an engine, to limit loads on bearings, arising from the pressure differentials across compressor and turbine disc assemblies. The diverse tasks of cooling, sealing and balancing are generally assigned to a system known as the internal air system or secondary flow system. This paper describes the technologies associated with this system for both industrial gas turbine engines and aero-engines, and the current state of the art and challenges in component and subsystem design.展开更多
Free chloride ions dissolved in pore water of cement based materials initiate the corrosion of steel rebars used for reinforcement of concrete and thus pose serious constant danger to the safety of reinforced concrete...Free chloride ions dissolved in pore water of cement based materials initiate the corrosion of steel rebars used for reinforcement of concrete and thus pose serious constant danger to the safety of reinforced concrete structures.The in-situ monitoring of the content of chlorides in pore water with second order Ag/AgCl electrodes is an elegant approach which, however,suffers from poor stability of Ag/AgCl electrodes in highly alkaline environment like pore water.In this work the electrochemical stability of plain and stabilized electrodeposited Ag/AgCl sensors in extreme alkaline conditions are presented. The electrochemical processes were elucidated which govern the potentiometric response of Ag/AgCl sensors and determine their performance.The results have shown suitable stability and reproducibility of stabilized Ag/AgCl sensors over five months, which was sufficient for laboratory testing of chloride ingress into cement based materials.The embedded calibrated sensor elements were used to monitor the chloride uptake into cylindrical mortar specimen dipped into simulated pore water containing about 3 wt% of chloride ions.The velocity of diffusing front and the diffusion coefficient of chloride ions in pore water of cylindrical mortar sample were estimated from concentration-time profiles determined by chloride sensors positioned at defined positions in the sample wall.展开更多
The subsea suspended manifold designed to replace the traditional foundation structure with the buoys is a new generation subsea production system that can be suspended at a certain height from the seafloor and rapidl...The subsea suspended manifold designed to replace the traditional foundation structure with the buoys is a new generation subsea production system that can be suspended at a certain height from the seafloor and rapidly recycled by its own buoyancy.Due to complex environmental conditions,its hydrodynamic performance in the splash zone is extremely important for the safety of the whole installation process.In this paper,the mathematical model for the dynamic analysis of the seawater ingress process of the single-layer pre-set horizontal cabin is proposed based on the different center of gravity positions of the buoy.Meanwhile,the theoretical analysis of fiber cable is divided into infinite differential units by the discretization method,and the formulae of the horizontal displacement of the subsea suspended manifold are presented.In addition,the simulations are carried out to verify the rules of the dynamic responses on the subsea suspended manifold system with the consideration of the environmental conditions in the South China Sea.Comparing with the calculated value of the mathematical model of the cabin water ingress,the error of the simulation result by use of FLUENT is about 5.47%.Furthermore,the wave height is greater than the current impact on the lowering manifold system and the azimuth angle of the installation vessel is aligned with the direction of the environmental load.展开更多
Songliao Basin is filled predominantly with continental facies sediments including alluvial fan, fluvial plain, fan delta, lacustrine delta, shore - shallow lacustrine, beach salty flat, semi - deep to deep lacustrine...Songliao Basin is filled predominantly with continental facies sediments including alluvial fan, fluvial plain, fan delta, lacustrine delta, shore - shallow lacustrine, beach salty flat, semi - deep to deep lacustrine, subaqueous gravity flow,lacustrine swamp and pyroclastic sediments. However, some event units were formed during lake - marine linking periods of the Mid - Cretaceous in the basin, which include black shales with high values for salinity (Sr/Ba) , alkalinity ( Ca + Mg)/(Si + Al) , reducibility (Ni + Zn)/Ga and sulfide sulfur as well as heavy isotopes. The Breitenholz -section to be represented for facies comparison with the Cretaceous evaporitic series in Northeast China is localized in Southwest Germany. Stratigraphically it belongs to the Crabfeld Formation of Keuper of the Germanic Triassic corresponding to Ladinian - Carnian of the international reference scale, and is generally called Lower Gipskeuper. The Germanic Triassic was deposited in the epicontinental (cratonic) central Europe Basin. It covered the area in between Great Britain, North Sea, Poland and Southern Germany. It is composed of cyclic deposits of multicolored mudstones, gypsum/anhydrite, and dolomite beds. The two cases of marine ingression - influenced sequences share some common features.展开更多
Following the evolution of currently enforced Performance Based Design standards of reinforced concrete (RC) structures for durability, the designer, rather than complying with given prescriptive limits, may instead s...Following the evolution of currently enforced Performance Based Design standards of reinforced concrete (RC) structures for durability, the designer, rather than complying with given prescriptive limits, may instead specify a cementitious mix design that is proven to exhibit a code prescribed resistance level (class) to a given exposure environment. Such compliance will lead to the protection of the steel reinforcement from corrosion and the cementitious mortar from degradation, during the design lifespan of the structure, under aggressive environmental exposure conditions such as, marine or deicing salts and carbonation. In this context, the enhancement of the physical and durability properties of common cement-based mortars under chloride exposure are experimentally investigated herein. In particular, the experimental program reported herein aims to evaluate the influence of incorporating multi-walled carbon nanotubes on the physical and mechanical properties of reinforced mortars against chloride ions. Furthermore, the anticorrosion protection of cementitious composites prepared with nanomaterials at 0.2% w/w is further investigated, by comparing all test results against reference specimens prepared without any additive. Electrochemical (Half-cell potential, corrosion current) and mass loss of reinforcement steel measurements were performed, while the porosity, capillary absorption and flexural strength were measured to evaluate the mechanical and durability characteristics of the mortars, following a period of exposure of eleven months;SEM images coupled with EDX analysis were further recorded and used for microstructure observation. The test results indicate that the inclusion of the nanomaterials in the mix improved the durability of the mortar specimens, while the nano-modified composites exhibited higher chloride penetration resistance and flexural strength than the corresponding values of the reference mortars. The test results and the comparison between nanomodified and reference mortars showed that the use of CNTs as addition led to protection of steel reinforcing bars against pitting corrosion and a significant improvement in flexural strength and porosity of the mortars.展开更多
The rim seals of gas turbines are used to prevent or reduce the ingestion of hot mainstream gas into the wheel-space between the turbine rotor and its adjacent stationary casing.The ingestion is caused by local pressu...The rim seals of gas turbines are used to prevent or reduce the ingestion of hot mainstream gas into the wheel-space between the turbine rotor and its adjacent stationary casing.The ingestion is caused by local pressure differences between the mainstream and the wheel-space;ingress usually occurs where the mainstream pressure is higher than that in the wheel-space and egress occurs where it is lower.Sealing air,which is supplied to the wheel-space,flows through the seal clearance and joins the mainstream flow.Too much sealing air is inefficient;too little can lead to disastrous consequences.The nozzle guide vanes create three-dimensional(3D)variations in the distribution of pressure in the mainstream annulus and the turbine blades create unsteady effects.Computational fluid dynamics(CFD)is both time-consuming and expensive for these 3D unsteady flows,and engine designers tend to use correlations or simple models to predict ingress.This paper describes the application of simple‘orifice models’,the analytical solutions of which can be used to calculate the sealing effectiveness of turbine rim seals.The solutions agree well with available data for externally-induced ingress,where the effects of rotation are negligible,for rotationally-induced ingress,where the effects of the external flow are small,and for combined ingress,where the effects of both external flow and rotation are significant.展开更多
Corrosion of embedded rebars is a classical deterioration mechanism of reinforced concrete structures exposed to chloride environments. Such environments can be attributed to the presence of seawater, deicing or sea-s...Corrosion of embedded rebars is a classical deterioration mechanism of reinforced concrete structures exposed to chloride environments. Such environments can be attributed to the presence of seawater, deicing or sea-salts, which have high concentrations of chloride ion. Chloride ingress into concrete, essential for inducing rebar corrosion, is a complex interaction between many physical and chemical processes. The current study proposes two chloride ingress parameter models for fly ash concrete, namely: 1) surface chloride content under tidal exposure condition; and 2) chloride binding. First, inconsistencies in surface chloride content and chloride binding models reported in literature, due to them not being in line with past research studies, are pointed out. Secondly, to avoid such inconsistencies, surface chloride content and chloride binding models for fly ash concrete are proposed based upon the experimental work done by other researchers. It is observed that, proposed models are simple, consistent and in line with past research studies reported in literature.展开更多
Many studies on the mixture design of fly ash and slag ternary blended concrete have been conducted.However,these previous studies did not consider the effects of climate change,such as acceleration in the deteriorati...Many studies on the mixture design of fly ash and slag ternary blended concrete have been conducted.However,these previous studies did not consider the effects of climate change,such as acceleration in the deterioration of durability,on mixture design.This study presents a procedure for the optimal mixture design of termary blended concrete considering climate change and durability.First,the costs of CO2 emissions and material are calculated based on the concrete mixture and unit prices.Total cost is equal to the sum of material cost and CO2 emissions cost,and is set as the objective function of the optimization.Second,strength,slump,carbonation,and chloride ingress models are used to evaluate concrete properties.The effect of different climate change scenarios on carbonation and chloride ingress is considered.A genetic algorithm is used to find the optimal mixture considering various constraints.Third,ilustrative examples are shown for mixture design of ternary blended concrete.The analysis results show that for termary blended concrete exposed to an atmospheric environment,a rich mix is necessary to meet the challenge of climate change,and for termary blended concrete exposed to a marine environment,the impact of climate change on mixture design is marginal.展开更多
An investigation on chloride ingress and macro-cell corrosion of steel bars in concrete made with recycled brick aggregate(RBA)was carried out.As control cases,virgin brick aggregate(BA)and stone aggregate(SA)were als...An investigation on chloride ingress and macro-cell corrosion of steel bars in concrete made with recycled brick aggregate(RBA)was carried out.As control cases,virgin brick aggregate(BA)and stone aggregate(SA)were also investigated.Both cylindrical and cracked prism specimens were studied for 16 different cases.The prism specimens were made with a segmented steel bar providing electrical connection from outside of the specimens to measure macro-cell corrosion current continuously under seawater splash exposure for a period of 30 d using a data logger.Cylindrical specimens were submerged in 3%NaCl solution at a temperature of 40℃ to investigate chloride ingress in concrete made with RBA,BA,and SA after 120 and 180 d.Half-cell potential,corrosion area,and depths of corrosion were also investigated.The chloride ingress as well as corrosion of steel bars in concrete made with the different types of aggregate is ordered as RBA>BA>SA.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 50538087, 50908103 and 50878098)
文摘In order to study the durability behavior of marine reinforced concrete structure suffering from chloride attack, the structural service life is assumed to be divided into three critical stages, which can be characterized by steel corrosion and cover cracking. For each stage, a calculated model used to predict the lifetime is developed. Based on the definition of durability limit state, a probabilistic lifetime model and its time-dependent reliability analytical method are proposed considering the random natures of influencing factors. Then, the probabilistic lifetime prediction models are applied to a bridge pier located in the Hangzhou Bay with Monte Carlo simulation. It is found that the time to corrosion initiation to follows a lognormal distribution, while that the time from corrosion initiation to cover cracking t~ and the time for crack to develop from hairline crack to a limit crack width t2 can be described by Weibull distributions. With the permitted failure probability of 5.0%, it is also observed that the structural durability lifetime mainly depends on the durability life to and that the percentage of participation of the life to to the total service life grows from 61.5% to 83.6% when the cover thickness increases from 40 mm to 80 mm. Therefore, for any part of the marine RC bridge, the lifetime predictions and maintenance efforts should also be directed toward controlling the stage of corrosion initiation induced by chloride ion.
基金Funded by National Natural Science Fundation of China (No.51178106)Open Program from Guangxi Key Laboratory of Disaster Prevention and Reduction (No.2008TMKF009)+1 种基金973 Program (No.2009CB623200)Program for New Century Excellent Talentsin University
文摘2D,3D chloride ion concentration at the edge and corner zones were systematically investigated for fly ash concretes made with different cement replacement percentage by fly ash (0%,10%,20%,40%,60%),water to binder ratios (0.3,0.35,0.4),and curing ages (28 d,90 d).An interaction effect caused by 2D and 3D diffusion could obviously be observed through the comparison with 1D testing results.In order to quantify the interaction effect,2D and 3D diffusion interaction coefficients was proposed in this paper.Finally,the changes of 2D and 3D interaction coefficients with the change in the free chloride ion concentration were given.The above research provide an insight into chloride ion attack on the edge and corner reinforcing bars of concrete structures in the field of civil engineering.
文摘The challenging conditions at which gas turbine engines operate mean that careful management of component temperatures is necessary, in order to ensure component integrity and reasonable service life. Pressurised flows extracted from the compressor can be used for cooling, sealing and balancing of components throughout the engine. Cooling is typically necessary for some combustor and turbine components, and sealing flows may be needed to exclude high temperature gases. In addition to cooling and sealing requirements, there is also a need to balance thrust loads in an engine, to limit loads on bearings, arising from the pressure differentials across compressor and turbine disc assemblies. The diverse tasks of cooling, sealing and balancing are generally assigned to a system known as the internal air system or secondary flow system. This paper describes the technologies associated with this system for both industrial gas turbine engines and aero-engines, and the current state of the art and challenges in component and subsystem design.
文摘Free chloride ions dissolved in pore water of cement based materials initiate the corrosion of steel rebars used for reinforcement of concrete and thus pose serious constant danger to the safety of reinforced concrete structures.The in-situ monitoring of the content of chlorides in pore water with second order Ag/AgCl electrodes is an elegant approach which, however,suffers from poor stability of Ag/AgCl electrodes in highly alkaline environment like pore water.In this work the electrochemical stability of plain and stabilized electrodeposited Ag/AgCl sensors in extreme alkaline conditions are presented. The electrochemical processes were elucidated which govern the potentiometric response of Ag/AgCl sensors and determine their performance.The results have shown suitable stability and reproducibility of stabilized Ag/AgCl sensors over five months, which was sufficient for laboratory testing of chloride ingress into cement based materials.The embedded calibrated sensor elements were used to monitor the chloride uptake into cylindrical mortar specimen dipped into simulated pore water containing about 3 wt% of chloride ions.The velocity of diffusing front and the diffusion coefficient of chloride ions in pore water of cylindrical mortar sample were estimated from concentration-time profiles determined by chloride sensors positioned at defined positions in the sample wall.
基金financially supported by the National Natural Science Foundation of China(Grant No.52071336)the National Key Research and Development Program of China(Grant No.2016YFC0303701)+1 种基金the Ministry of Industry and Information Technology Special Project(Grant No.2018GXB01-07)the CNOOC Limited Shenzhen Branch(Grant No.CCL2019SZPS0541)。
文摘The subsea suspended manifold designed to replace the traditional foundation structure with the buoys is a new generation subsea production system that can be suspended at a certain height from the seafloor and rapidly recycled by its own buoyancy.Due to complex environmental conditions,its hydrodynamic performance in the splash zone is extremely important for the safety of the whole installation process.In this paper,the mathematical model for the dynamic analysis of the seawater ingress process of the single-layer pre-set horizontal cabin is proposed based on the different center of gravity positions of the buoy.Meanwhile,the theoretical analysis of fiber cable is divided into infinite differential units by the discretization method,and the formulae of the horizontal displacement of the subsea suspended manifold are presented.In addition,the simulations are carried out to verify the rules of the dynamic responses on the subsea suspended manifold system with the consideration of the environmental conditions in the South China Sea.Comparing with the calculated value of the mathematical model of the cabin water ingress,the error of the simulation result by use of FLUENT is about 5.47%.Furthermore,the wave height is greater than the current impact on the lowering manifold system and the azimuth angle of the installation vessel is aligned with the direction of the environmental load.
基金NSFC (National Science Foundation of China) Project No. 4967212, attained with the assistance of the AvH (Alexander von Humboldt Foundation) of Germany.
文摘Songliao Basin is filled predominantly with continental facies sediments including alluvial fan, fluvial plain, fan delta, lacustrine delta, shore - shallow lacustrine, beach salty flat, semi - deep to deep lacustrine, subaqueous gravity flow,lacustrine swamp and pyroclastic sediments. However, some event units were formed during lake - marine linking periods of the Mid - Cretaceous in the basin, which include black shales with high values for salinity (Sr/Ba) , alkalinity ( Ca + Mg)/(Si + Al) , reducibility (Ni + Zn)/Ga and sulfide sulfur as well as heavy isotopes. The Breitenholz -section to be represented for facies comparison with the Cretaceous evaporitic series in Northeast China is localized in Southwest Germany. Stratigraphically it belongs to the Crabfeld Formation of Keuper of the Germanic Triassic corresponding to Ladinian - Carnian of the international reference scale, and is generally called Lower Gipskeuper. The Germanic Triassic was deposited in the epicontinental (cratonic) central Europe Basin. It covered the area in between Great Britain, North Sea, Poland and Southern Germany. It is composed of cyclic deposits of multicolored mudstones, gypsum/anhydrite, and dolomite beds. The two cases of marine ingression - influenced sequences share some common features.
文摘Following the evolution of currently enforced Performance Based Design standards of reinforced concrete (RC) structures for durability, the designer, rather than complying with given prescriptive limits, may instead specify a cementitious mix design that is proven to exhibit a code prescribed resistance level (class) to a given exposure environment. Such compliance will lead to the protection of the steel reinforcement from corrosion and the cementitious mortar from degradation, during the design lifespan of the structure, under aggressive environmental exposure conditions such as, marine or deicing salts and carbonation. In this context, the enhancement of the physical and durability properties of common cement-based mortars under chloride exposure are experimentally investigated herein. In particular, the experimental program reported herein aims to evaluate the influence of incorporating multi-walled carbon nanotubes on the physical and mechanical properties of reinforced mortars against chloride ions. Furthermore, the anticorrosion protection of cementitious composites prepared with nanomaterials at 0.2% w/w is further investigated, by comparing all test results against reference specimens prepared without any additive. Electrochemical (Half-cell potential, corrosion current) and mass loss of reinforcement steel measurements were performed, while the porosity, capillary absorption and flexural strength were measured to evaluate the mechanical and durability characteristics of the mortars, following a period of exposure of eleven months;SEM images coupled with EDX analysis were further recorded and used for microstructure observation. The test results indicate that the inclusion of the nanomaterials in the mix improved the durability of the mortar specimens, while the nano-modified composites exhibited higher chloride penetration resistance and flexural strength than the corresponding values of the reference mortars. The test results and the comparison between nanomodified and reference mortars showed that the use of CNTs as addition led to protection of steel reinforcing bars against pitting corrosion and a significant improvement in flexural strength and porosity of the mortars.
文摘The rim seals of gas turbines are used to prevent or reduce the ingestion of hot mainstream gas into the wheel-space between the turbine rotor and its adjacent stationary casing.The ingestion is caused by local pressure differences between the mainstream and the wheel-space;ingress usually occurs where the mainstream pressure is higher than that in the wheel-space and egress occurs where it is lower.Sealing air,which is supplied to the wheel-space,flows through the seal clearance and joins the mainstream flow.Too much sealing air is inefficient;too little can lead to disastrous consequences.The nozzle guide vanes create three-dimensional(3D)variations in the distribution of pressure in the mainstream annulus and the turbine blades create unsteady effects.Computational fluid dynamics(CFD)is both time-consuming and expensive for these 3D unsteady flows,and engine designers tend to use correlations or simple models to predict ingress.This paper describes the application of simple‘orifice models’,the analytical solutions of which can be used to calculate the sealing effectiveness of turbine rim seals.The solutions agree well with available data for externally-induced ingress,where the effects of rotation are negligible,for rotationally-induced ingress,where the effects of the external flow are small,and for combined ingress,where the effects of both external flow and rotation are significant.
文摘Corrosion of embedded rebars is a classical deterioration mechanism of reinforced concrete structures exposed to chloride environments. Such environments can be attributed to the presence of seawater, deicing or sea-salts, which have high concentrations of chloride ion. Chloride ingress into concrete, essential for inducing rebar corrosion, is a complex interaction between many physical and chemical processes. The current study proposes two chloride ingress parameter models for fly ash concrete, namely: 1) surface chloride content under tidal exposure condition; and 2) chloride binding. First, inconsistencies in surface chloride content and chloride binding models reported in literature, due to them not being in line with past research studies, are pointed out. Secondly, to avoid such inconsistencies, surface chloride content and chloride binding models for fly ash concrete are proposed based upon the experimental work done by other researchers. It is observed that, proposed models are simple, consistent and in line with past research studies reported in literature.
基金This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(No.2015R1A5A1037548)an NRF Grant(NRF-2020R1A2C4002093)This study was supported by a 2018 Research grant(POINT)from Kangwon National University.
文摘Many studies on the mixture design of fly ash and slag ternary blended concrete have been conducted.However,these previous studies did not consider the effects of climate change,such as acceleration in the deterioration of durability,on mixture design.This study presents a procedure for the optimal mixture design of termary blended concrete considering climate change and durability.First,the costs of CO2 emissions and material are calculated based on the concrete mixture and unit prices.Total cost is equal to the sum of material cost and CO2 emissions cost,and is set as the objective function of the optimization.Second,strength,slump,carbonation,and chloride ingress models are used to evaluate concrete properties.The effect of different climate change scenarios on carbonation and chloride ingress is considered.A genetic algorithm is used to find the optimal mixture considering various constraints.Third,ilustrative examples are shown for mixture design of ternary blended concrete.The analysis results show that for termary blended concrete exposed to an atmospheric environment,a rich mix is necessary to meet the challenge of climate change,and for termary blended concrete exposed to a marine environment,the impact of climate change on mixture design is marginal.
文摘An investigation on chloride ingress and macro-cell corrosion of steel bars in concrete made with recycled brick aggregate(RBA)was carried out.As control cases,virgin brick aggregate(BA)and stone aggregate(SA)were also investigated.Both cylindrical and cracked prism specimens were studied for 16 different cases.The prism specimens were made with a segmented steel bar providing electrical connection from outside of the specimens to measure macro-cell corrosion current continuously under seawater splash exposure for a period of 30 d using a data logger.Cylindrical specimens were submerged in 3%NaCl solution at a temperature of 40℃ to investigate chloride ingress in concrete made with RBA,BA,and SA after 120 and 180 d.Half-cell potential,corrosion area,and depths of corrosion were also investigated.The chloride ingress as well as corrosion of steel bars in concrete made with the different types of aggregate is ordered as RBA>BA>SA.