We tested and modified the quasi-analytical algorithm (QAA) using 57 groups of field data collected in the spring of 2003 in the Yellow Sea and East China Sea. The QAA performs well in deriving total absorption coef...We tested and modified the quasi-analytical algorithm (QAA) using 57 groups of field data collected in the spring of 2003 in the Yellow Sea and East China Sea. The QAA performs well in deriving total absorption coefficients of typical coastal waters. The average percentage difference (APD) is in a range of 13.9%-38.5% for the total absorption coefficient (13.9% at 440 nm), and differences in particle backscattering coefficient bbp(2) are less than 50% (in the case of the updated QAA). To obtain improved results, we modified the QAA by adjusting the empirical relationships. The modified algorithm is then applied to the field data to test its performance. The APDs were 44.7%-46.6% for bbp(λ) and 9.9%-32.8% (9.9% at 555 nm) for the total absorption coefficient. This indicates that the modified QAA derives better results. We also used the modified model to derive phytoplankton pigment absorption (aph) and detritus and CDOM absorption (aug) coefficients. The APDs for aph and a dg at 440 nm are 37.1% and 19.8%. In this paper, we discuss error sources using the measured dataset. More independent field data can improve this algorithm and derive better results.展开更多
The Changjiang (Yangtze) Estuary is located in the East China Sea shelf with shallow water. Affected by the tide mixing and the runoff of the Changjiang River and the Qiantang River the turbidity is very high. Gener...The Changjiang (Yangtze) Estuary is located in the East China Sea shelf with shallow water. Affected by the tide mixing and the runoff of the Changjiang River and the Qiantang River the turbidity is very high. Generally, the water-leaving radiance is high in the turbid water because of the large particle scattering. Based on the in-situ data and ocean color remote sensing data of SeaWiFS, it was found that there was a black water region with the normalized water-leaving radiances less than 0.5 mW/(cm2-μm2-sr). The optical principle of the occurrence of this black water was analyzed by the inherent optical properties and the ocean color components. The results show that black water is caused by the relative low values of the suspended particle matter concentration and the back scattering ratio. In the black water region, the percentage of the phytoplankton absorption was relatively high, and the large size of the phytoplankton caused the low value of the particle backscattering ratio.展开更多
基金Supported by the National Natural Science Foundation of China (Nos.40706060,60802089)the National High Technology Research and Development Program of China (863 Program) (No.2007AA092102)the Dragon Project (No.5292)
文摘We tested and modified the quasi-analytical algorithm (QAA) using 57 groups of field data collected in the spring of 2003 in the Yellow Sea and East China Sea. The QAA performs well in deriving total absorption coefficients of typical coastal waters. The average percentage difference (APD) is in a range of 13.9%-38.5% for the total absorption coefficient (13.9% at 440 nm), and differences in particle backscattering coefficient bbp(2) are less than 50% (in the case of the updated QAA). To obtain improved results, we modified the QAA by adjusting the empirical relationships. The modified algorithm is then applied to the field data to test its performance. The APDs were 44.7%-46.6% for bbp(λ) and 9.9%-32.8% (9.9% at 555 nm) for the total absorption coefficient. This indicates that the modified QAA derives better results. We also used the modified model to derive phytoplankton pigment absorption (aph) and detritus and CDOM absorption (aug) coefficients. The APDs for aph and a dg at 440 nm are 37.1% and 19.8%. In this paper, we discuss error sources using the measured dataset. More independent field data can improve this algorithm and derive better results.
基金The National Basic Research and Development Program ("973" Program) of China under contract No2009CB421202the National Natural Science Foundation of China under contract No 40706061the National High Technol-ogy Development Program ("863" Program) of China under contract Nos 2007AA12Z137 and 2008AA09Z104
文摘The Changjiang (Yangtze) Estuary is located in the East China Sea shelf with shallow water. Affected by the tide mixing and the runoff of the Changjiang River and the Qiantang River the turbidity is very high. Generally, the water-leaving radiance is high in the turbid water because of the large particle scattering. Based on the in-situ data and ocean color remote sensing data of SeaWiFS, it was found that there was a black water region with the normalized water-leaving radiances less than 0.5 mW/(cm2-μm2-sr). The optical principle of the occurrence of this black water was analyzed by the inherent optical properties and the ocean color components. The results show that black water is caused by the relative low values of the suspended particle matter concentration and the back scattering ratio. In the black water region, the percentage of the phytoplankton absorption was relatively high, and the large size of the phytoplankton caused the low value of the particle backscattering ratio.