A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal resi...A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal residual stresses in medium thickness plate weldment is calculated and analyzed. A new method of calculating inherent strains and longitudinal residual stresses is proposed.展开更多
The current paper focuses on the prediction of residual stresses and distortions in the Laser Powder Bed Fusion(LPBF)built Ti6Al4V thin-walled geometries using Ansys Additive Print(AAP)software which employs a layer-b...The current paper focuses on the prediction of residual stresses and distortions in the Laser Powder Bed Fusion(LPBF)built Ti6Al4V thin-walled geometries using Ansys Additive Print(AAP)software which employs a layer-by-layer accumulation of inherent strain to calculate the deformations.Isotropic and anisotropic strain scaling factors were calibrated initially within the APP software for the Ti6Al4V based single cantilever beam geometry.Subsequently,the numerical simulations were performed in APP software and computed the residual stresses and distortions for the varied process parameters including laser power,scan speed and hatch distance while maintaining the layer thickness constant for all the design iterations.The numerical predictions were compared;they were found to match reasonably well with the XRD measurements within the calibrated regime.展开更多
An inherent strain method was applied to the welding deformation analysis of left girder of GM’s Buick’s chassis underframe assembly. Three models are used in the calculation. Model 1 takes into account the longitud...An inherent strain method was applied to the welding deformation analysis of left girder of GM’s Buick’s chassis underframe assembly. Three models are used in the calculation. Model 1 takes into account the longitudinal and transverse inherent strains; model 2 considers only longitudinal inherent strain; model 3 also takes into account the longitudinal and transverse inherent strains, but inherent strains are taken according to the function instead of the constant, for simulating the variation of the girder’s stiffness during welding process. The result shows the deformation of model 2 is less than that of the model 1, the error is less than 10% of the absolute displacement. So the longitudinal inherent strain is the main factor determining boxes-girder’s welding deformation. The deformation of model 3 is also less than that of the model 1, because the inherent strains of the model 3 are less than that of the model 1. At last, the welding deformation of the whole underframe was analyzed. The analysis results can be taken as references not only for the choices of welding sequence, welding parameters and fixture’s location, but also for welding deformation prediction of other car chassis.展开更多
文摘A fundamental theory for the analysis of residual welding stresses and deformation based on the inherent strain distribution along the welded joint is introduced. Distribution of inherent strains and longitudinal residual stresses in medium thickness plate weldment is calculated and analyzed. A new method of calculating inherent strains and longitudinal residual stresses is proposed.
文摘The current paper focuses on the prediction of residual stresses and distortions in the Laser Powder Bed Fusion(LPBF)built Ti6Al4V thin-walled geometries using Ansys Additive Print(AAP)software which employs a layer-by-layer accumulation of inherent strain to calculate the deformations.Isotropic and anisotropic strain scaling factors were calibrated initially within the APP software for the Ti6Al4V based single cantilever beam geometry.Subsequently,the numerical simulations were performed in APP software and computed the residual stresses and distortions for the varied process parameters including laser power,scan speed and hatch distance while maintaining the layer thickness constant for all the design iterations.The numerical predictions were compared;they were found to match reasonably well with the XRD measurements within the calibrated regime.
基金Shanghai Car Industry Science and Technology DevelopmentFoundation (No.2 3 2 8A)
文摘An inherent strain method was applied to the welding deformation analysis of left girder of GM’s Buick’s chassis underframe assembly. Three models are used in the calculation. Model 1 takes into account the longitudinal and transverse inherent strains; model 2 considers only longitudinal inherent strain; model 3 also takes into account the longitudinal and transverse inherent strains, but inherent strains are taken according to the function instead of the constant, for simulating the variation of the girder’s stiffness during welding process. The result shows the deformation of model 2 is less than that of the model 1, the error is less than 10% of the absolute displacement. So the longitudinal inherent strain is the main factor determining boxes-girder’s welding deformation. The deformation of model 3 is also less than that of the model 1, because the inherent strains of the model 3 are less than that of the model 1. At last, the welding deformation of the whole underframe was analyzed. The analysis results can be taken as references not only for the choices of welding sequence, welding parameters and fixture’s location, but also for welding deformation prediction of other car chassis.