α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in var...α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in various plant foods but also as a major microbial metabolite of dietary anthocyanins in the large colon.The present study investigated the inhibitory mechanism of PCA on a-glucosidase in vitro and examined its effect on postprandial blood glucose levels in vivo.Results from in vitro experiments demonstrated that PCA was a mix-type inhibitor of a-glucosidase.Driven by hydrogen bonds and van der Waals interactions,PCA reversibly bound withα-glucosidase to form a stable a-glucosidase-PCA complex in a spontaneous manner.The computational simulation found that PCA could insert into the active cavity of a-glucosidase and establish hydrogen bonds with catalytic amino acid residues.PCA binding aroused the steric hindrance for substrates to enter active sites and caused the structural changes of interacted catalytic amino acid residues.PCA also exhibited postprandial hypoglycemic capacity in diabetic mice.This study may provide the theoretical basis for the application of PCA as an active ingredient of functional foods in dietary management of diabetes.展开更多
Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing d...Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing demand in special fields for the development of surfaces that can resist wetting by high-temperature molten droplets(>1200°C)using facile design and fabrication strategies.Herein,bioinspired directional structures(BDSs)were prepared on Y2O3-stabilized ZrO2(YSZ)surfaces using femtosecond laser ablation.Benefiting from the anisotropic energy barriers,the BDSs featured with no additional modifiers showed a remarkable increase from 9.2°to 60°in the contact angle of CaO–MgO–Al2O3–SiO2(CMAS)melt and a 70.1%reduction in the spreading area of CMAS at 1250°C,compared with polished super-CMAS-melt-philic YSZ surfaces.Moreover,the BDSs demonstrated exceptional wetting inhibition even at 1400°C,with an increase from 3.3°to 31.3°in contact angle and a 67.9%decrease in spreading area.This work provides valuable insight and a facile preparation strategy for effectively inhibiting the wetting of molten droplets on super-melt-philic surfaces at extremely high temperatures.展开更多
In the context of building a country with a strong transportation network,railway container transportation(RCT)is an import-ant means of reducing costs,increasing efficiency,and adjusting transportation structures.Thu...In the context of building a country with a strong transportation network,railway container transportation(RCT)is an import-ant means of reducing costs,increasing efficiency,and adjusting transportation structures.Thus,its impact on regional economic devel-opment is important.Based on data from railway container-handling stations and spatial econometric models,this study discusses the differences in the development of RCT and their impact on regional economic development at different leves.This study has three main findings:first,there are significant regional differences in the development of the RCT.The intra-regional differences between the east-ern and central regions of China(which do not include Hong Kong,Macao and Taiwan)are gradually narrowing,while the regional dif-ferences in the western region are widening.Meanwhile,the intra-regional differences in important economic zones such as Pearl River Delta Economic Zone(PRDEZ),Chengdu-Chongqing Economic Zone(CYEZ),Bohai Rim Economic Zone(BHEZ),and Yangtze River Delta Economic Zone(YRDEZ)are narrowing daily.Second,the development differences of RCT in regional level and import-ant economic regions level show different trends.The unbalanced features of large regions are increasingly evident,whereas the differ-ences in economic regions are decreasing.However,the problem of overlapping RCT remains prominent.Third,the transformation of RCT development mode and fierce competition among transportation modes cause RCT to have a restraining effect on the regional eco-nomy at three levels.Rational allocation of resources and other means must be used to guide the transformation from inhibition to pro-motion,and by formulating targeted policies that will promote the development of RCT,which will improve the transportation structure and help construct a country with a strong transportation system.展开更多
Objective:To investigate the role of RPRD1B in the progression of diffuse large B-cell lymphoma(DLBCL)and its potential as a therapeutic target.Methods:This study analyzed RPRD1B expression in DLBCL and normal tissues...Objective:To investigate the role of RPRD1B in the progression of diffuse large B-cell lymphoma(DLBCL)and its potential as a therapeutic target.Methods:This study analyzed RPRD1B expression in DLBCL and normal tissues using public databases and assessed its prognostic impact through survival analysis.In vitro and in vivo experiments were conducted to explore the mechanisms by which RPRD1B influences tumor growth and apoptosis.Results:RPRD1B expression was significantly elevated in DLBCL compared to normal tissues and was associated with poor prognosis.In vitro and in vivo experiments demonstrated that RPRD1B promoted lymphoma cell proliferation and inhibited apoptosis through the NF-κB signaling pathway.Conclusions:RPRD1B plays a critical role in the progression of DLBCL by modulating apoptosis and cellular proliferation.Targeting RPRD1B may offer a novel therapeutic strategy for DLBCL,suggesting its potential as a prognostic marker and therapeutic target in hematological malignancies.展开更多
Hepatocellular carcinoma(HCC)poses a significant threat to human health.Resistance to sorafenib in the chemotherapy of HCC is a common and significant issue that profoundly impacts clinical treatment.While several membe...Hepatocellular carcinoma(HCC)poses a significant threat to human health.Resistance to sorafenib in the chemotherapy of HCC is a common and significant issue that profoundly impacts clinical treatment.While several members of the transmembrane(TMEM)protein family have been implicated in the occurrence and progression of HCC,the association between TMEM39b and HCC remains unexplored.This study revealed a significant overexpression of TMEM39b in HCC,which correlated with a poor prognosis.Subsequent investigation revealed that RAS-selective lethal 3(RSL3)induced pronounced ferroptosis in HCC,and knocking down the expression of TMEM39b significantly decreased its severity.Similarly,following the induction of ferroptosis in HCC by sorafenib,knocking down the expression of TMEM39b also decreased the severity of ferroptosis,enhancing HCC tolerance to sorafenib.In conclusion,we propose that TMEM39b promotes tumor progression and resistance to sorafenib by inhibiting ferroptosis in HCC.展开更多
Objective:To investigate the cardioprotective potential of betulin in isoproterenol(ISO)-induced myocardial injury in rats.Methods:Wistar rats were divided into five groups(n=10):normal,ISO,nebivolol 5 mg/kg,and betul...Objective:To investigate the cardioprotective potential of betulin in isoproterenol(ISO)-induced myocardial injury in rats.Methods:Wistar rats were divided into five groups(n=10):normal,ISO,nebivolol 5 mg/kg,and betulin(20&40 mg/kg).Nebivolol and betulin were administered orally for 29 days.ISO(85 mg/kg)was administered subcutaneously on day 27 and day 28 to induce myocardial injury.On day 29,blood was collected for determination of cardiac markers,and hemodynamic parameters were investigated.The levels of oxidative stress markers and the gene expressions of apoptotic markers and inflammatory mediators were evaluated.Moreover,2,3,5-triphenyltetrazolium chloride staining and histopathological analysis were also performed.Results:Betulin reduced the size of myocardial infarction,decreased elevated levels of cardiac enzymes,and maintained hemodynamic functions.It also inhibited ISO-induced upregulation of Bax,caspase-3,NF-κB,and IL-6,enhanced endogenous antioxidant enzymes,and reduced lipid peroxidation.Additionally,pretreatment with betulin alleviated myocardial ischemic damage,as reflected by reduced myonecrosis,edema,and inflammatory changes.Conclusions:Betulin exhibits strong cardioprotective activity against ISO-induced myocardial injury by anti-inflammatory,anti-apoptotic,and antioxidant activities.展开更多
BACKGROUND Parthenolide(PTL),a sesquiterpene lactone derived from the medicinal herb Chrysanthemum parthenium,exhibits various biological effects by targeting NF-kB,STAT3,and other pathways.It has emerged as a promisi...BACKGROUND Parthenolide(PTL),a sesquiterpene lactone derived from the medicinal herb Chrysanthemum parthenium,exhibits various biological effects by targeting NF-kB,STAT3,and other pathways.It has emerged as a promising adjunct therapy for multiple malignancies.AIM To evaluate the in vitro and in vivo effect of PTL on cyclophosphamide(CTX)metronomic chemotherapy.METHODS The cytotoxicity of PTL and CTX on Lewis lung cancer cells(LLC cells)was assessed by measuring cell activity and apoptosis.The anti-tumor efficiency was evaluated using a tumor xenograft mice model,and the survival of mice and tumor volume were monitored.Additionally,the collected tumor tissues were analyzed for tumor microenvironment indicators and inflammatory factors.RESULTS In vitro,PTL demonstrated a synergistic effect with CTX in inhibiting the growth of LLC cells and promoting apoptosis.In vivo,metronomic chemotherapy com-bined with PTL and CTX improved the survival rate of tumor-bearing mice and reduced tumor growth rate.Furthermore,metronomic chemotherapy combined with PTL and CTX reduced NF-κB activation and improved the tumor immune microenvironment by decreasing tumor angiogenesis,reducing Transforming growth factorβ,andα-SMA positive cells.CONCLUSION PTL is an efficient compound that enhances the metronomic chemotherapy effects of CTX both in vitro and in vivo,suggesting its potential as a supplementary therapeutic strategy in metronomic chemotherapy to improve the chemotherapy effects.展开更多
Background:Ziwan and Taoren(ZT)is a classic medicine pair in the formula of Mai Dong Di Shao Decoction,has been used to treat primary Sjogren’s syndrome(pSS)for more than 20 years.But its action mechanism is still un...Background:Ziwan and Taoren(ZT)is a classic medicine pair in the formula of Mai Dong Di Shao Decoction,has been used to treat primary Sjogren’s syndrome(pSS)for more than 20 years.But its action mechanism is still unknown.This study is aimed to reveal the potential mechanism of ZT treated pSS and discover its active compounds of ZT and therapeutic target for pSS.Methods:Firstly,the potential pathways of ZT for pSS treatment were predicted through network pharmacology and GO and KEGG enrichment analysis.Secondly,the inter-structural relationships between active compounds of ZT and target proteins were visualized using molecular docking techniques.Finally,efficacy and mechanism were conducted through in vivo experiments,such as water intake,spleen index,hematoxylin-eosin staining pathological changes,ELISA,Western Blot analysis,and immunofluorescence staining.Results:Nine active compounds were extracted from network pharmacology,including quercitrin,luteolin,kaempferol,β-sitosterol,isorhamnetin,galangin,hederagenin,diosmetin and gibberellin 7.Seven disease targets were identified:RELA,TP53,AKT1,interleukin(IL)6,MAPK1,ESR1,IL10;with RELA being the most core target.KEGG and GO enrichment analysis indicated that ZT may act through the TLR/NF-κB/RELA inflammatory mechanism process.preliminary results of molecular docking showed that ZT’s active compounds bind well to the RELA(p65)receptor.In vivo results demonstrated that a high dose of ZT significantly improved water intake and reduced lymphocytes infiltration in submandibular gland pathology in NOD mice.The expression content of AQP5 and vasoactive intestinal peptide in the submaxillary gland was significantly increased,while levels of inflammatory factors such as tumor necrosis factor-α,IL-6,and IL-1βalong with protein expressions including toll-like receptor4,p-p65 and p-IKKα/βin NF-κB pathway were reduced.Conclusions:The ZT treatment exhibits a promising efficacy in mitigating dryness symptoms of pSS,potentially attributed to its capacity for suppressing the TLR/NF-κB inflammatory signaling pathway.展开更多
Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-asso...Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.展开更多
Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which mi...Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which microglia regulate the neuroinflammatory response to spinal cord injury,we performed single-cell RNA sequencing dataset analysis,focusing on changes in microglial subpopulations.We found that the MG1 subpopulation emerged in the acute/subacute phase of spinal cord injury and expressed genes related to cell pyroptosis,sphingomyelin metabolism,and neuroinflammation at high levels.Subsequently,we established a mouse model of contusive injury and performed intrathecal injection of siRNA and molecular inhibitors to validate the role of ceramide synthase 5 in the neuroinflammatory responses and pyroptosis after spinal cord injury.Finally,we established a PC12-BV2 cell co-culture system and found that ceramide synthase 5 and pyroptosis-associated proteins were highly expressed to induce the apoptosis of neuron cells.Inhibiting ceramide synthase 5 expression in a mouse model of spinal cord injury effectively reduced pyroptosis.Furthermore,ceramide synthase 5-induced pyroptosis was dependent on activation of the NLRP3 signaling pathway.Inhibiting ceramide synthase 5 expression in microglia in vivo reduced neuronal apoptosis and promoted recovery of neurological function.Pla2g7 formed a“bridge”between sphingolipid metabolism and ceramide synthase 5-mediated cell death by inhibiting the NLRP3 signaling pathway.Collectively,these findings suggest that inhibiting ceramide synthase 5 expression in microglia after spinal cord injury effectively suppressed microglial pyroptosis mediated by NLRP3,thereby exerting neuroprotective effects.展开更多
BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therap...BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.展开更多
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t...Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.展开更多
Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s...Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.展开更多
Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the...Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.展开更多
Hepatitis B virus(HBV)reactivation(HBVr)represents a severe and potentially life-threatening condition,and preventive measures are available through blood test screening or prophylactic therapy administration.The asse...Hepatitis B virus(HBV)reactivation(HBVr)represents a severe and potentially life-threatening condition,and preventive measures are available through blood test screening or prophylactic therapy administration.The assessment of HBVr traditionally considers factors such as HBV profile,including hepatitis B surface antigen(HBsAg)and antibody to hepatitis B core antigen,along with type of medication(chemotherapy;immunomodulants).Nevertheless,consideration of possible patient’s underlying tumor and the specific malignancy type(solid or hematologic)plays a crucial role and needs to be assessed for decision-making process.展开更多
Glucose is the primary fuel source of the brain,and therefore glucose levels need to be tightly regulated and maintained within a small physiological range.Certainly,the body necessitates a stable supply of energy mai...Glucose is the primary fuel source of the brain,and therefore glucose levels need to be tightly regulated and maintained within a small physiological range.Certainly,the body necessitates a stable supply of energy mainly provided by glucose for various bodily functions.High or low blood glucose levels would impair the physiological functions of various organs of the body.展开更多
Acceleration of tooth movement during orthodontic treatment is challenging, with osteoclast-mediated bone resorption on the compressive side being the rate-limiting step. Recent studies have demonstrated that mechanor...Acceleration of tooth movement during orthodontic treatment is challenging, with osteoclast-mediated bone resorption on the compressive side being the rate-limiting step. Recent studies have demonstrated that mechanoreceptors on the surface of monocytes/macrophages, especially adhesion G protein-coupled receptors (aGPCRs), play important roles in force sensing.However, its role in the regulation of osteoclast differentiation remains unclear. Herein, through single-cell analysis, we revealed that CD97, a novel mechanosensitive aGPCR, was expressed in macrophages. Compression upregulated CD97 expression and inhibited osteoclast differentiation;while knockdown of CD97 partially rescued osteoclast differentiation. It suggests that CD97 may be an important mechanosensitive receptor during osteoclast differentiation. RNA sequencing analysis showed that the Rap1a/ERK signalling pathway mediates the effects of CD97 on osteoclast differentiation under compression. Consistently, we clarified that administration of the Rap1a inhibitor GGTI298 increased osteoclast activity, thereby accelerating tooth movement. In conclusion,our results indicate that CD97 suppresses osteoclast differentiation through the Rap1a/ERK signalling pathway under orthodontic compressive force.展开更多
Herein,a novel method for fl uorometric detection of soybean trypsin inhibitor(SBTI)activity based on a water-soluble poly(diphenylacetylene)derivative was reported.Fluorescence quenching of the polymer via p-nitroani...Herein,a novel method for fl uorometric detection of soybean trypsin inhibitor(SBTI)activity based on a water-soluble poly(diphenylacetylene)derivative was reported.Fluorescence quenching of the polymer via p-nitroaniline,produced from the trypsin-catalyzed decomposition of N-benzoyl-DL-arginine-4-nitroanilide hydrochloride(L-BAPA),was well described using the Stern-Volmer equation.SBTI activity was quantitatively assessed based on changes in the fl uorescence intensity of the polymer.This strategy has several advantages,such as high sensitivity and ease of operation.Moreover,its applicability to other biochemical analyses is promising.展开更多
OBJECTIVE The inhibitory effect of active ingredients of Tripterygium wilfordii Hook.F.(TWHF)(celastrol,triptolide,triptonide,wilforlide A,wilforgine and wilforine)on human carboxylester⁃ase 1(CES1)and CES2 was detect...OBJECTIVE The inhibitory effect of active ingredients of Tripterygium wilfordii Hook.F.(TWHF)(celastrol,triptolide,triptonide,wilforlide A,wilforgine and wilforine)on human carboxylester⁃ase 1(CES1)and CES2 was detected to investigate the herb-drug interactions(HDIs)of TWHF.METHODS Human liver microsomes catalysed hydrolysis of 2-(2-benzoyl-3-methoxyphenyl)benzothi⁃azole(BMBT)and fluorescein diacetate(FD)were used as the probe reaction to phenotype the activity of CES1 and CES2,respectively.The residual activities of CES1 and CES2 were detected by ultrahigh performance liquid chromatography(UPLC)after intervention with celastrol,triptolide,triptonide,wilforlide A,wilforgine and wilforine(100μmol·L^(-1)).Kinetics analysis,involving half inhibitory concentra⁃tion(IC_(50)),inhibition type and kinetic parameter(Ki),and in vitro-in vivo extrapolation(IVIVE),was carried out to predict the HDIs between these compounds and CES-metabolizing drugs.Molecular docking was performed to analyze the ligand-enzyme interaction.RESULTS Out of the six main con⁃stituents of TWHF,only celastrol exhibited strong inhibition towards both CES1 and CES2,with the inhibitory rates of 97.45%(P<0.05)and 95.62%(P<0.05),respectively.The IC_(50)was 9.95 and 4.02 mol·L^(-1),respectively,and the types of inhibition were all non-competitive inhibition.Based on the kinetics analysis,the Ki values were calculated to be 5.10 and 10.55μmol·L^(-1)for the inhibition of celastrol on CES1 and CES2,respectively.IVIVE indicated that celastrol might disturb the metabolic hydrolysis of clinical drugs in vivo by inhibiting CES1.Molecular docking results showed that hydrogen bonds and hydrophobic contacts contributed to the interaction of celastrol and CESs.CONCLUSION The inhibitory effect of celastrol on CES1 and CES2 might cause HDIs with clinical drugs hydrolysed by CESs.展开更多
While several previous studies have indicated the link between periodontal disease (PD) and myocardial infarction (MI), theunderlying mechanisms remain unclear. Autophagy, a cellular quality control process that is ac...While several previous studies have indicated the link between periodontal disease (PD) and myocardial infarction (MI), theunderlying mechanisms remain unclear. Autophagy, a cellular quality control process that is activated in several diseases, includingheart failure, can be suppressed by Porphyromonas gingivalis (P.g.). However, it is uncertain whether autophagy impairment byperiodontal pathogens stimulates the development of cardiac dysfunction after MI. Thus, this study aimed to investigate therelationship between PD and the development of MI while focusing on the role of autophagy. Neonatal rat cardiomyocytes(NRCMs) and MI model mice were inoculated with wild-type P.g. or gingipain-deficient P.g. to assess the effect of autophagyinhibition by P.g. Wild-type P.g.-inoculated NRCMs had lower cell viability than those inoculated with gingipain-deficient P.g. Thisstudy also revealed that gingipains can cleave vesicle-associated membrane protein 8 (VAMP8), a protein involved in lysosomalsensitive factor attachment protein receptors (SNAREs), at the 47th lysine residue, thereby inhibiting autophagy. Wild-type P.g.-inoculated MI model mice were more susceptible to cardiac rupture, with lower survival rates and autophagy activity thangingipain-deficient P.g.-inoculated MI model mice. After inoculating genetically modified MI model mice (VAMP8-K47A) with wildtype P.g., they exhibited significantly increased autophagy activation compared with the MI model mice inoculated with wild-typeP.g., which suppressed cardiac rupture and enhanced overall survival rates. These findings suggest that gingipains, which arevirulence factors of P.g., impair the infarcted myocardium by cleaving VAMP8 and disrupting autophagy. This study confirms thestrong association between PD and MI and provides new insights into the potential role of autophagy in this relationship.展开更多
基金supported by the General Research Fund of Hong Kong (14105820)。
文摘α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in various plant foods but also as a major microbial metabolite of dietary anthocyanins in the large colon.The present study investigated the inhibitory mechanism of PCA on a-glucosidase in vitro and examined its effect on postprandial blood glucose levels in vivo.Results from in vitro experiments demonstrated that PCA was a mix-type inhibitor of a-glucosidase.Driven by hydrogen bonds and van der Waals interactions,PCA reversibly bound withα-glucosidase to form a stable a-glucosidase-PCA complex in a spontaneous manner.The computational simulation found that PCA could insert into the active cavity of a-glucosidase and establish hydrogen bonds with catalytic amino acid residues.PCA binding aroused the steric hindrance for substrates to enter active sites and caused the structural changes of interacted catalytic amino acid residues.PCA also exhibited postprandial hypoglycemic capacity in diabetic mice.This study may provide the theoretical basis for the application of PCA as an active ingredient of functional foods in dietary management of diabetes.
基金This work was supported by National Natural Science Foundation of China(No.52105212)Sichuan Science and Technology Program(No.2023NSFSC0863)China Postdoctoral Science Foundation(No.2021M702712).
文摘Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing demand in special fields for the development of surfaces that can resist wetting by high-temperature molten droplets(>1200°C)using facile design and fabrication strategies.Herein,bioinspired directional structures(BDSs)were prepared on Y2O3-stabilized ZrO2(YSZ)surfaces using femtosecond laser ablation.Benefiting from the anisotropic energy barriers,the BDSs featured with no additional modifiers showed a remarkable increase from 9.2°to 60°in the contact angle of CaO–MgO–Al2O3–SiO2(CMAS)melt and a 70.1%reduction in the spreading area of CMAS at 1250°C,compared with polished super-CMAS-melt-philic YSZ surfaces.Moreover,the BDSs demonstrated exceptional wetting inhibition even at 1400°C,with an increase from 3.3°to 31.3°in contact angle and a 67.9%decrease in spreading area.This work provides valuable insight and a facile preparation strategy for effectively inhibiting the wetting of molten droplets on super-melt-philic surfaces at extremely high temperatures.
基金Under the auspices of National Key Research and Development Program of China(No.2023YFB4302200)National Natural Science Foundation of China(No.71831002,72174053)+1 种基金Liaoning Province Xingliao Talent Plan(No.XLYC2008030)Talent Planning in Dalian(No.2022RG05)。
文摘In the context of building a country with a strong transportation network,railway container transportation(RCT)is an import-ant means of reducing costs,increasing efficiency,and adjusting transportation structures.Thus,its impact on regional economic devel-opment is important.Based on data from railway container-handling stations and spatial econometric models,this study discusses the differences in the development of RCT and their impact on regional economic development at different leves.This study has three main findings:first,there are significant regional differences in the development of the RCT.The intra-regional differences between the east-ern and central regions of China(which do not include Hong Kong,Macao and Taiwan)are gradually narrowing,while the regional dif-ferences in the western region are widening.Meanwhile,the intra-regional differences in important economic zones such as Pearl River Delta Economic Zone(PRDEZ),Chengdu-Chongqing Economic Zone(CYEZ),Bohai Rim Economic Zone(BHEZ),and Yangtze River Delta Economic Zone(YRDEZ)are narrowing daily.Second,the development differences of RCT in regional level and import-ant economic regions level show different trends.The unbalanced features of large regions are increasingly evident,whereas the differ-ences in economic regions are decreasing.However,the problem of overlapping RCT remains prominent.Third,the transformation of RCT development mode and fierce competition among transportation modes cause RCT to have a restraining effect on the regional eco-nomy at three levels.Rational allocation of resources and other means must be used to guide the transformation from inhibition to pro-motion,and by formulating targeted policies that will promote the development of RCT,which will improve the transportation structure and help construct a country with a strong transportation system.
基金funded by Hainan Provincial Natural Science Foundation of China(820QN401,822QN468)Science and Technology Special Fund of Hainan Province,China,(ZDYF2024SHFZ114)+1 种基金Health Science and Technology Innovation Joint Project of Hainan Province,China(WSJK2024MS231)Hainan Province Clinical Medical Center Construction(Project[2022]276).
文摘Objective:To investigate the role of RPRD1B in the progression of diffuse large B-cell lymphoma(DLBCL)and its potential as a therapeutic target.Methods:This study analyzed RPRD1B expression in DLBCL and normal tissues using public databases and assessed its prognostic impact through survival analysis.In vitro and in vivo experiments were conducted to explore the mechanisms by which RPRD1B influences tumor growth and apoptosis.Results:RPRD1B expression was significantly elevated in DLBCL compared to normal tissues and was associated with poor prognosis.In vitro and in vivo experiments demonstrated that RPRD1B promoted lymphoma cell proliferation and inhibited apoptosis through the NF-κB signaling pathway.Conclusions:RPRD1B plays a critical role in the progression of DLBCL by modulating apoptosis and cellular proliferation.Targeting RPRD1B may offer a novel therapeutic strategy for DLBCL,suggesting its potential as a prognostic marker and therapeutic target in hematological malignancies.
基金The present study was supported by the Sichuan Science and Technology Program(2023YFG0262).
文摘Hepatocellular carcinoma(HCC)poses a significant threat to human health.Resistance to sorafenib in the chemotherapy of HCC is a common and significant issue that profoundly impacts clinical treatment.While several members of the transmembrane(TMEM)protein family have been implicated in the occurrence and progression of HCC,the association between TMEM39b and HCC remains unexplored.This study revealed a significant overexpression of TMEM39b in HCC,which correlated with a poor prognosis.Subsequent investigation revealed that RAS-selective lethal 3(RSL3)induced pronounced ferroptosis in HCC,and knocking down the expression of TMEM39b significantly decreased its severity.Similarly,following the induction of ferroptosis in HCC by sorafenib,knocking down the expression of TMEM39b also decreased the severity of ferroptosis,enhancing HCC tolerance to sorafenib.In conclusion,we propose that TMEM39b promotes tumor progression and resistance to sorafenib by inhibiting ferroptosis in HCC.
文摘Objective:To investigate the cardioprotective potential of betulin in isoproterenol(ISO)-induced myocardial injury in rats.Methods:Wistar rats were divided into five groups(n=10):normal,ISO,nebivolol 5 mg/kg,and betulin(20&40 mg/kg).Nebivolol and betulin were administered orally for 29 days.ISO(85 mg/kg)was administered subcutaneously on day 27 and day 28 to induce myocardial injury.On day 29,blood was collected for determination of cardiac markers,and hemodynamic parameters were investigated.The levels of oxidative stress markers and the gene expressions of apoptotic markers and inflammatory mediators were evaluated.Moreover,2,3,5-triphenyltetrazolium chloride staining and histopathological analysis were also performed.Results:Betulin reduced the size of myocardial infarction,decreased elevated levels of cardiac enzymes,and maintained hemodynamic functions.It also inhibited ISO-induced upregulation of Bax,caspase-3,NF-κB,and IL-6,enhanced endogenous antioxidant enzymes,and reduced lipid peroxidation.Additionally,pretreatment with betulin alleviated myocardial ischemic damage,as reflected by reduced myonecrosis,edema,and inflammatory changes.Conclusions:Betulin exhibits strong cardioprotective activity against ISO-induced myocardial injury by anti-inflammatory,anti-apoptotic,and antioxidant activities.
基金Supported by Joint Funding of Yunnan Ministry of Science and Technology,No.2019FF002-048and Beijing Heathco Clinical Oncology Research Foundation,No.Y-Q201802-048.
文摘BACKGROUND Parthenolide(PTL),a sesquiterpene lactone derived from the medicinal herb Chrysanthemum parthenium,exhibits various biological effects by targeting NF-kB,STAT3,and other pathways.It has emerged as a promising adjunct therapy for multiple malignancies.AIM To evaluate the in vitro and in vivo effect of PTL on cyclophosphamide(CTX)metronomic chemotherapy.METHODS The cytotoxicity of PTL and CTX on Lewis lung cancer cells(LLC cells)was assessed by measuring cell activity and apoptosis.The anti-tumor efficiency was evaluated using a tumor xenograft mice model,and the survival of mice and tumor volume were monitored.Additionally,the collected tumor tissues were analyzed for tumor microenvironment indicators and inflammatory factors.RESULTS In vitro,PTL demonstrated a synergistic effect with CTX in inhibiting the growth of LLC cells and promoting apoptosis.In vivo,metronomic chemotherapy com-bined with PTL and CTX improved the survival rate of tumor-bearing mice and reduced tumor growth rate.Furthermore,metronomic chemotherapy combined with PTL and CTX reduced NF-κB activation and improved the tumor immune microenvironment by decreasing tumor angiogenesis,reducing Transforming growth factorβ,andα-SMA positive cells.CONCLUSION PTL is an efficient compound that enhances the metronomic chemotherapy effects of CTX both in vitro and in vivo,suggesting its potential as a supplementary therapeutic strategy in metronomic chemotherapy to improve the chemotherapy effects.
基金grants from the National Natural Science Foundation of China(82274454).
文摘Background:Ziwan and Taoren(ZT)is a classic medicine pair in the formula of Mai Dong Di Shao Decoction,has been used to treat primary Sjogren’s syndrome(pSS)for more than 20 years.But its action mechanism is still unknown.This study is aimed to reveal the potential mechanism of ZT treated pSS and discover its active compounds of ZT and therapeutic target for pSS.Methods:Firstly,the potential pathways of ZT for pSS treatment were predicted through network pharmacology and GO and KEGG enrichment analysis.Secondly,the inter-structural relationships between active compounds of ZT and target proteins were visualized using molecular docking techniques.Finally,efficacy and mechanism were conducted through in vivo experiments,such as water intake,spleen index,hematoxylin-eosin staining pathological changes,ELISA,Western Blot analysis,and immunofluorescence staining.Results:Nine active compounds were extracted from network pharmacology,including quercitrin,luteolin,kaempferol,β-sitosterol,isorhamnetin,galangin,hederagenin,diosmetin and gibberellin 7.Seven disease targets were identified:RELA,TP53,AKT1,interleukin(IL)6,MAPK1,ESR1,IL10;with RELA being the most core target.KEGG and GO enrichment analysis indicated that ZT may act through the TLR/NF-κB/RELA inflammatory mechanism process.preliminary results of molecular docking showed that ZT’s active compounds bind well to the RELA(p65)receptor.In vivo results demonstrated that a high dose of ZT significantly improved water intake and reduced lymphocytes infiltration in submandibular gland pathology in NOD mice.The expression content of AQP5 and vasoactive intestinal peptide in the submaxillary gland was significantly increased,while levels of inflammatory factors such as tumor necrosis factor-α,IL-6,and IL-1βalong with protein expressions including toll-like receptor4,p-p65 and p-IKKα/βin NF-κB pathway were reduced.Conclusions:The ZT treatment exhibits a promising efficacy in mitigating dryness symptoms of pSS,potentially attributed to its capacity for suppressing the TLR/NF-κB inflammatory signaling pathway.
基金supported by the National Natural Science Foundation of China,Nos.82071008(to BL)and 82004001(to XJ)Medical Science and Technology Program of Health Commission of Henan Province,No.LHGJ20210072(to RQ)Science and Technology Department of Henan Province,No.212102310307(to XJ)。
文摘Retinitis pigmentosa is a group of inherited diseases that lead to retinal degeneration and photoreceptor cell death.However,there is no effective treatment for retinitis pigmentosa caused by PDE6B mutation.Adeno-associated virus(AAV)-mediated gene therapy is a promising strategy for treating retinitis pigmentosa.The aim of this study was to explore the molecular mechanisms by which AAV2-PDE6B rescues retinal function.To do this,we injected retinal degeneration 10(rd10)mice subretinally with AAV2-PDE6B and assessed the therapeutic effects on retinal function and structure using dark-and light-adapted electroretinogram,optical coherence tomography,and immunofluorescence.Data-independent acquisition-mass spectrometry-based proteomic analysis was conducted to investigate protein expression levels and pathway enrichment,and the results from this analysis were verified by real-time polymerase chain reaction and western blotting.AAV2-PDE6B injection significantly upregulated PDE6βexpression,preserved electroretinogram responses,and preserved outer nuclear layer thickness in rd10 mice.Differentially expressed proteins between wild-type and rd10 mice were closely related to visual perception,and treating rd10 mice with AAV2-PDE6B restored differentially expressed protein expression to levels similar to those seen in wild-type mice.Kyoto Encyclopedia of Genes and Genome analysis showed that the differentially expressed proteins whose expression was most significantly altered by AAV2-PDE6B injection were enriched in phototransduction pathways.Furthermore,the phototransductionrelated proteins Pde6α,Rom1,Rho,Aldh1a1,and Rbp1 exhibited opposite expression patterns in rd10 mice with or without AAV2-PDE6B treatment.Finally,Bax/Bcl-2,p-ERK/ERK,and p-c-Fos/c-Fos expression levels decreased in rd10 mice following AAV2-PDE6B treatment.Our data suggest that AAV2-PDE6B-mediated gene therapy promotes phototransduction and inhibits apoptosis by inhibiting the ERK signaling pathway and upregulating Bcl-2/Bax expression in retinitis pigmentosa.
基金supported by grants from the National Key Research and Development Program of China,No.2017YFA0105400(to LR)the Key Research and Development Program of Guangdong Province,No.2019B020236002(to LR)the National Natural Science Foundation of China,Nos.81972111(to LZ),81772349(to BL).
文摘Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which microglia regulate the neuroinflammatory response to spinal cord injury,we performed single-cell RNA sequencing dataset analysis,focusing on changes in microglial subpopulations.We found that the MG1 subpopulation emerged in the acute/subacute phase of spinal cord injury and expressed genes related to cell pyroptosis,sphingomyelin metabolism,and neuroinflammation at high levels.Subsequently,we established a mouse model of contusive injury and performed intrathecal injection of siRNA and molecular inhibitors to validate the role of ceramide synthase 5 in the neuroinflammatory responses and pyroptosis after spinal cord injury.Finally,we established a PC12-BV2 cell co-culture system and found that ceramide synthase 5 and pyroptosis-associated proteins were highly expressed to induce the apoptosis of neuron cells.Inhibiting ceramide synthase 5 expression in a mouse model of spinal cord injury effectively reduced pyroptosis.Furthermore,ceramide synthase 5-induced pyroptosis was dependent on activation of the NLRP3 signaling pathway.Inhibiting ceramide synthase 5 expression in microglia in vivo reduced neuronal apoptosis and promoted recovery of neurological function.Pla2g7 formed a“bridge”between sphingolipid metabolism and ceramide synthase 5-mediated cell death by inhibiting the NLRP3 signaling pathway.Collectively,these findings suggest that inhibiting ceramide synthase 5 expression in microglia after spinal cord injury effectively suppressed microglial pyroptosis mediated by NLRP3,thereby exerting neuroprotective effects.
基金Supported by the Scientific Foundation of Administration of Traditional Chinese Medicine of Hebei Province,China,No.2023257.
文摘BACKGROUND Jianpi Gushen Huayu Decoction(JPGS)has been used to clinically treat diabetic nephropathy(DN)for many years.However,the protective mechanism of JPGS in treating DN remains unclear.AIM To evaluate the therapeutic effects and the possible mechanism of JPGS on DN.METHODS We first evaluated the therapeutic potential of JPGS on a DN mouse model.We then investigated the effect of JPGS on the renal metabolite levels of DN mice using non-targeted metabolomics.Furthermore,we examined the effects of JPGS on c-Jun N-terminal kinase(JNK)/P38-mediated apoptosis and the inflammatory responses mediated by toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)/NOD-like receptor family pyrin domain containing 3(NLRP3).RESULTS The ameliorative effects of JPGS on DN mice included the alleviation of renal injury and the control of inflammation and oxidative stress.Untargeted metabolomic analysis revealed that JPGS altered the metabolites of the kidneys in DN mice.A total of 51 differential metabolites were screened.Pathway analysis results indicated that nine pathways significantly changed between the control and model groups,while six pathways significantly altered between the model and JPGS groups.Pathways related to cysteine and methionine metabolism;alanine,tryptophan metabolism;aspartate and glutamate metabolism;and riboflavin metabolism were identified as the key pathways through which JPGS affects DN.Further experimental validation showed that JPGS treatment reduced the expression of TLR4/NF-κB/NLRP3 pathways and JNK/P38 pathway-mediated apoptosis related factors.CONCLUSION JPGS could markedly treat mice with streptozotocin(STZ)-induced DN,which is possibly related to the regulation of several metabolic pathways found in kidneys.Furthermore,JPGS could improve kidney inflammatory responses and ameliorate kidney injuries in DN mice via the TLR4/NF-κB/NLRP3 pathway and inhibit JNK/P38 pathwaymediated apoptosis in DN mice.
基金funds from the National Natural Science Foundation of China(51772082 and 51804106)the Natural Science Foundation of Hunan Province(2023JJ10005)
文摘Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.
基金supported by the National Natural Science Foundation of China (31901462 and 31671613).
文摘Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.
基金The National Natural Science Foundation of China under contract No.41721005the Fund of the Ministry of Natural Resources of the People’s Republic of China under contract Nos IRASCC 02-01-01 and 01-01-02C.
文摘Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.
文摘Hepatitis B virus(HBV)reactivation(HBVr)represents a severe and potentially life-threatening condition,and preventive measures are available through blood test screening or prophylactic therapy administration.The assessment of HBVr traditionally considers factors such as HBV profile,including hepatitis B surface antigen(HBsAg)and antibody to hepatitis B core antigen,along with type of medication(chemotherapy;immunomodulants).Nevertheless,consideration of possible patient’s underlying tumor and the specific malignancy type(solid or hematologic)plays a crucial role and needs to be assessed for decision-making process.
基金supported by grants from the NIH(P01DK113954,R01DK115761,R01DK117281,R01DK125480 and R01DK120858 to YXR01DK129548 to YH)+1 种基金USDA/CRIS(51000-064-01S to YX)Postdoctoral Fellowship(2020AHA000POST000204188)to LT。
文摘Glucose is the primary fuel source of the brain,and therefore glucose levels need to be tightly regulated and maintained within a small physiological range.Certainly,the body necessitates a stable supply of energy mainly provided by glucose for various bodily functions.High or low blood glucose levels would impair the physiological functions of various organs of the body.
基金supported by the Natural Science Foundation of Hebei Province (H2020206226)Hebei Province Science and Technology Support Program (18277756D)+1 种基金the Science and Technology Research Project of Hebei Higher Education Institutions (ZD2022010)High-level Talent Funding Project of Hebei (C20231141) to W.W。
文摘Acceleration of tooth movement during orthodontic treatment is challenging, with osteoclast-mediated bone resorption on the compressive side being the rate-limiting step. Recent studies have demonstrated that mechanoreceptors on the surface of monocytes/macrophages, especially adhesion G protein-coupled receptors (aGPCRs), play important roles in force sensing.However, its role in the regulation of osteoclast differentiation remains unclear. Herein, through single-cell analysis, we revealed that CD97, a novel mechanosensitive aGPCR, was expressed in macrophages. Compression upregulated CD97 expression and inhibited osteoclast differentiation;while knockdown of CD97 partially rescued osteoclast differentiation. It suggests that CD97 may be an important mechanosensitive receptor during osteoclast differentiation. RNA sequencing analysis showed that the Rap1a/ERK signalling pathway mediates the effects of CD97 on osteoclast differentiation under compression. Consistently, we clarified that administration of the Rap1a inhibitor GGTI298 increased osteoclast activity, thereby accelerating tooth movement. In conclusion,our results indicate that CD97 suppresses osteoclast differentiation through the Rap1a/ERK signalling pathway under orthodontic compressive force.
基金The authors appreciate the support from the Zhe-jiang Province Lingyan Key R&D Project(No.2022C01177)the Zhejiang Administration for Market Regulation Eyas Program Cultiva-tion Project(No.CY2022355).
文摘Herein,a novel method for fl uorometric detection of soybean trypsin inhibitor(SBTI)activity based on a water-soluble poly(diphenylacetylene)derivative was reported.Fluorescence quenching of the polymer via p-nitroaniline,produced from the trypsin-catalyzed decomposition of N-benzoyl-DL-arginine-4-nitroanilide hydrochloride(L-BAPA),was well described using the Stern-Volmer equation.SBTI activity was quantitatively assessed based on changes in the fl uorescence intensity of the polymer.This strategy has several advantages,such as high sensitivity and ease of operation.Moreover,its applicability to other biochemical analyses is promising.
文摘OBJECTIVE The inhibitory effect of active ingredients of Tripterygium wilfordii Hook.F.(TWHF)(celastrol,triptolide,triptonide,wilforlide A,wilforgine and wilforine)on human carboxylester⁃ase 1(CES1)and CES2 was detected to investigate the herb-drug interactions(HDIs)of TWHF.METHODS Human liver microsomes catalysed hydrolysis of 2-(2-benzoyl-3-methoxyphenyl)benzothi⁃azole(BMBT)and fluorescein diacetate(FD)were used as the probe reaction to phenotype the activity of CES1 and CES2,respectively.The residual activities of CES1 and CES2 were detected by ultrahigh performance liquid chromatography(UPLC)after intervention with celastrol,triptolide,triptonide,wilforlide A,wilforgine and wilforine(100μmol·L^(-1)).Kinetics analysis,involving half inhibitory concentra⁃tion(IC_(50)),inhibition type and kinetic parameter(Ki),and in vitro-in vivo extrapolation(IVIVE),was carried out to predict the HDIs between these compounds and CES-metabolizing drugs.Molecular docking was performed to analyze the ligand-enzyme interaction.RESULTS Out of the six main con⁃stituents of TWHF,only celastrol exhibited strong inhibition towards both CES1 and CES2,with the inhibitory rates of 97.45%(P<0.05)and 95.62%(P<0.05),respectively.The IC_(50)was 9.95 and 4.02 mol·L^(-1),respectively,and the types of inhibition were all non-competitive inhibition.Based on the kinetics analysis,the Ki values were calculated to be 5.10 and 10.55μmol·L^(-1)for the inhibition of celastrol on CES1 and CES2,respectively.IVIVE indicated that celastrol might disturb the metabolic hydrolysis of clinical drugs in vivo by inhibiting CES1.Molecular docking results showed that hydrogen bonds and hydrophobic contacts contributed to the interaction of celastrol and CESs.CONCLUSION The inhibitory effect of celastrol on CES1 and CES2 might cause HDIs with clinical drugs hydrolysed by CESs.
基金supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in-Aid for Scientific Research (C) 20K08399 (to Yasuhiro Maejima)KAKENHI 19K18985,Grant-in-Aid for JSPS Fellows+1 种基金MSD Life Science FoundationPublic Interest Incorporated Foundation (to Yuka Shiheido-Watanabe)
文摘While several previous studies have indicated the link between periodontal disease (PD) and myocardial infarction (MI), theunderlying mechanisms remain unclear. Autophagy, a cellular quality control process that is activated in several diseases, includingheart failure, can be suppressed by Porphyromonas gingivalis (P.g.). However, it is uncertain whether autophagy impairment byperiodontal pathogens stimulates the development of cardiac dysfunction after MI. Thus, this study aimed to investigate therelationship between PD and the development of MI while focusing on the role of autophagy. Neonatal rat cardiomyocytes(NRCMs) and MI model mice were inoculated with wild-type P.g. or gingipain-deficient P.g. to assess the effect of autophagyinhibition by P.g. Wild-type P.g.-inoculated NRCMs had lower cell viability than those inoculated with gingipain-deficient P.g. Thisstudy also revealed that gingipains can cleave vesicle-associated membrane protein 8 (VAMP8), a protein involved in lysosomalsensitive factor attachment protein receptors (SNAREs), at the 47th lysine residue, thereby inhibiting autophagy. Wild-type P.g.-inoculated MI model mice were more susceptible to cardiac rupture, with lower survival rates and autophagy activity thangingipain-deficient P.g.-inoculated MI model mice. After inoculating genetically modified MI model mice (VAMP8-K47A) with wildtype P.g., they exhibited significantly increased autophagy activation compared with the MI model mice inoculated with wild-typeP.g., which suppressed cardiac rupture and enhanced overall survival rates. These findings suggest that gingipains, which arevirulence factors of P.g., impair the infarcted myocardium by cleaving VAMP8 and disrupting autophagy. This study confirms thestrong association between PD and MI and provides new insights into the potential role of autophagy in this relationship.