Traumatic brain injury induces secondary injury that contributes to neuroinflammation, neuronal loss, and neurological dysfunction. One important injury mechanism is cell cycle activation which causes neuronal apoptos...Traumatic brain injury induces secondary injury that contributes to neuroinflammation, neuronal loss, and neurological dysfunction. One important injury mechanism is cell cycle activation which causes neuronal apoptosis and glial activation. The neuroprotective effects of both non-selective (Flavopiridol) and selective (Roscovitine and CR-8) cyclin-dependent kinase inhibitors have been shown across mukiple experimental traumatic brain injury models and species. Cyclin-depen- dent kinaseinhibitors, administered as a single systemic dose up to 24 hours after traumatic brain injury, provide strong neuroprotection-reducing neuronal cell death, neuroinflammation and neurological dysfunction. Given their effectiveness and long therapeutic window, cyclin-dependent kinase inhibitors appear to be promising candidates for clinical traumatic brain injury trials.展开更多
Disinfection by-products occur widely as the unintended effect of water disinfection and are associated with toxicity and adverse human health effects. Yet the molecular mechanisms of their toxicity are not well under...Disinfection by-products occur widely as the unintended effect of water disinfection and are associated with toxicity and adverse human health effects. Yet the molecular mechanisms of their toxicity are not well understood. To investigate the molecular basis of hyperploidy induction by monohaloacetonitriles, the interaction of monohaloacetonitriles with topoisomerase Ⅱ in Chinese hamster ovary cells was examined. We showed a concentration-dependent inhibition of DNA decatenation activity of topoisomerase under acellular conditions while in vitro monohaloacetonitrile treatment expressed mixed results. The working hypothesis, that topoisomerase Ⅱ is a molecular target of monohaloacetonitriles, was only partially supported.Nevertheless, this research serves as a starting point toward molecular mechanisms of toxic action of monohaloacetonitriles.展开更多
文摘Traumatic brain injury induces secondary injury that contributes to neuroinflammation, neuronal loss, and neurological dysfunction. One important injury mechanism is cell cycle activation which causes neuronal apoptosis and glial activation. The neuroprotective effects of both non-selective (Flavopiridol) and selective (Roscovitine and CR-8) cyclin-dependent kinase inhibitors have been shown across mukiple experimental traumatic brain injury models and species. Cyclin-depen- dent kinaseinhibitors, administered as a single systemic dose up to 24 hours after traumatic brain injury, provide strong neuroprotection-reducing neuronal cell death, neuroinflammation and neurological dysfunction. Given their effectiveness and long therapeutic window, cyclin-dependent kinase inhibitors appear to be promising candidates for clinical traumatic brain injury trials.
基金supported by NSF STC Water CAMPWS (Award CTS-0120978)the U.S.EPA STAR Grant R834867funded in part by the U.S.Environmental Protection Agency's STAR program
文摘Disinfection by-products occur widely as the unintended effect of water disinfection and are associated with toxicity and adverse human health effects. Yet the molecular mechanisms of their toxicity are not well understood. To investigate the molecular basis of hyperploidy induction by monohaloacetonitriles, the interaction of monohaloacetonitriles with topoisomerase Ⅱ in Chinese hamster ovary cells was examined. We showed a concentration-dependent inhibition of DNA decatenation activity of topoisomerase under acellular conditions while in vitro monohaloacetonitrile treatment expressed mixed results. The working hypothesis, that topoisomerase Ⅱ is a molecular target of monohaloacetonitriles, was only partially supported.Nevertheless, this research serves as a starting point toward molecular mechanisms of toxic action of monohaloacetonitriles.