With the help of model experiments, we are able to offer a detailed proposal for the inhibition of DNA duplication and no inhibition of RNA viral infectivity. As a backbone, we introduced methyl phosphotriester (MPTE)...With the help of model experiments, we are able to offer a detailed proposal for the inhibition of DNA duplication and no inhibition of RNA viral infectivity. As a backbone, we introduced methyl phosphotriester (MPTE). Duplex formation according to the traditional Watson and Crick base-pairing: [(MPTE)<sub>n−1</sub> DNA] * DNA and [(MPTE)<sub>n−1</sub> DNA] * RNA, where n = number of DNA and RNA bases. However, in the latter case, inhibition is obtained by reduction of the number of MPTE linkages, as is confirmed with model experiments and under biological conditions with micro (mi)RNA substrates. The latter results have recently been published. One or more single MPTEs are disseminated over different places of DNA without neighbour MPTEs (Prof. Wen-Yih Chen and his group, Taiwan).展开更多
Quantitative structure–activity relationship study using artificial neural network (ANN) methodology were conducted to predict the inhibition constants of 127 symmetrical and unsymmetrical cyclic urea and cyclic cyan...Quantitative structure–activity relationship study using artificial neural network (ANN) methodology were conducted to predict the inhibition constants of 127 symmetrical and unsymmetrical cyclic urea and cyclic cyanoguanidine derivatives containing different substituent groups such as: benzyl, isopropyl, 4-hydroxybenzyl, ketone, oxime, pyrazole, imidazole, triazole and having anti-HIV-1 protease activities. The results obtained by artificial neural network give advanced regression models with good prediction ability. The two optimal artificial neural network models obtained have coefficients of determination of 0.746 and 0.756. The lowest prediction’s root mean square error obtained is 0.607. Artificial neural networks provide improved models for heterogeneous data sets without splitting them into families. Both the external and cross-validation methods are used to validate the performances of the resulting models. Randomization test is employed to check the suitability of the models.展开更多
The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (M...The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (MAPK) signal pathway can positively regulate the replication of HIV-1, but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood. In this study, we used the Extracellular signal-regulated kinase (ERK) pathway inhibitor, PD98059, the Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, and the p38 pathway inhibitor, SB203580, to investigate the roles of these pathways in HIV-1 replication. We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity. In addition, SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-INL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity. We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059 when cells were treated with all three MAPK pathway inhibitors in combination. Finally, we show that HIV-1 virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.展开更多
Acquired immunodeficiency syndrome (AIDS) is a fatal disease which highly threatens the health of human being. Human immunodeficiency virus (HIV) is the pathogeny for this disease. Investigating HIV-1 protease cleavag...Acquired immunodeficiency syndrome (AIDS) is a fatal disease which highly threatens the health of human being. Human immunodeficiency virus (HIV) is the pathogeny for this disease. Investigating HIV-1 protease cleavage sites can help researchers find or develop protease inhibitors which can restrain the replication of HIV-1, thus resisting AIDS. Feature selection is a new approach for solving the HIV-1 protease cleavage site prediction task and it’s a key point in our research. Comparing with the previous work, there are several advantages in our work. First, a filter method is used to eliminate the redundant features. Second, besides traditional orthogonal encoding (OE), two kinds of newly proposed features extracted by conducting principal component analysis (PCA) and non-linear Fisher transformation (NLF) on AAindex database are used. The two new features are proven to perform better than OE. Third, the data set used here is largely expanded to 1922 samples. Also to improve prediction performance, we conduct parameter optimization for SVM, thus the classifier can obtain better prediction capability. We also fuse the three kinds of features to make sure comprehensive feature representation and improve prediction performance. To effectively evaluate the prediction performance of our method, five parameters, which are much more than previous work, are used to conduct complete comparison. The experimental results of our method show that our method gain better performance than the state of art method. This means that the feature selection combined with feature fusion and classifier parameter optimization can effectively improve HIV-1 cleavage site prediction. Moreover, our work can provide useful help for HIV-1 protease inhibitor developing in the future.展开更多
Site-directed spin-labeling with continuous wave electron paramagnetic resonance spectroscopy was used to monitor autoproteolysis of HIV-1 protease, an enzyme essential for viral maturation. Two protein constructs wer...Site-directed spin-labeling with continuous wave electron paramagnetic resonance spectroscopy was used to monitor autoproteolysis of HIV-1 protease, an enzyme essential for viral maturation. Two protein constructs were examined, namely subtype F and the circulating recombinant form CRF01_A/E. As the protease undergoes self-cleavage, protein unfolds and small peptide fragments containing the spin label are generated, which collectively give rise to a sharp spectral component that is easily discernable in the high-field resonance line in the EPR spectrum. By monitoring the intensity of this spectral component over time, the autoproteolytic stability of each construct was characterized under various conditions. Data were collected for samples stored at 4 °C, 25 °C, and 37 °C, and on a subtype F HIV-1 protease sample stored at 25 °C and containing the FDA-approved protease inhibitor Tipranavir. As expected, the rate of autoproteolysis decreased as the storage temperature was lowered. Minimal autoproteolysis was seen for the sample that contained Tipranavir, providing direction for future spectroscopic studies of active protease samples. When compared to standard methods of monitoring protein degradation such as gel electrophoresis or chromatographic analyses, spin-labeling with CW EPR offers a facile, real-time, non-consuming way to monitor autoproteolysis or protein degradation. Additionally, mass spectrometry studies revealed that the N-termini of both constructs are sensitive to degradation and that the sites of specific autoproteolysis vary.展开更多
Developing orally available small molecule inhibitors of HIV-1 fusion has attracted significant interest over many years. Frey had recently reported several synthetic compounds which are experimentally shown to inhibi...Developing orally available small molecule inhibitors of HIV-1 fusion has attracted significant interest over many years. Frey had recently reported several synthetic compounds which are experimentally shown to inhibit cell-cell fusion in the low micromolar range. We carried out computational study to help identify possible binding modes by docking these compounds onto the hydrophobic pocket on gp41 and to characterize structures of binding complexes. The detailed gp41-molecule binding interactions and free energies of binding are obtained through mo- lecular dynamics simulation and MM-PBSA calculation. Specific molecular interactions in the gp41-inhibitor com- plexes are identified. The present computational study complements the corresponding experimental investigation and helps establish a good starting point for further refinement of small molecular gp41 inhibitors.展开更多
The functions and activities of proteins are closely related to their structures and dynamics,and their interactions with ligands.Knowledge of the mechanistic events of proteins’conformational transitions and interac...The functions and activities of proteins are closely related to their structures and dynamics,and their interactions with ligands.Knowledge of the mechanistic events of proteins’conformational transitions and interactions with ligands is crucially important to understand the functions and biological activities of proteins and thus to the design of novel inhibitors of the targeted receptor.In this review article,taking two important systems as examples,i.e.,human immunodeficiency virus type 1 protease(HIV-1 PR)and adenylate kinase(AdK),and focusing on the molecular dynamics simulations of the conformational transitions of protein and the protein-ligand association/dissociation,we explain how the conformational transitions of proteins influence the interactions with their ligands,and how the ligands impact the function and dynamics of proteins.These results of structural dynamics of HIV-1 PR and AdK and their interactions with ligands can help to understand the principle of conformational transitions of proteins,or the interactions of ligands to their biological targets,and thus provide meaningful message in chemistry and biology of drug design and discovery.展开更多
Salt influences protein stability through electrostatic mechanisms as well as through nonpolar Hofmeister effects.In the present work,a continuum solvation based model is developed to explore the impact of salt on pro...Salt influences protein stability through electrostatic mechanisms as well as through nonpolar Hofmeister effects.In the present work,a continuum solvation based model is developed to explore the impact of salt on protein stability.This model relies on a traditional Poisson-Boltzmann(PB)term to describe the polar or electrostatic effects of salt,and a surface area dependent term containing a salt concentration dependent microscopic surface tension function to capture the non-polar Hofmeister effects.The model is first validated against a series of cold-shock protein variants whose salt-dependent protein fold stability profiles have been previously determined experimentally.The approach is then applied to HIV-1 protease in order to explain an experimentally observed enhancement in stability and activity at high(1M)NaCl concentration.The inclusion of the salt-dependent non-polar term brings the model into quantitative agreement with experiment,and provides the basis for further studies into the impact of ionic strength on protein structure,function,and evolution.展开更多
文摘With the help of model experiments, we are able to offer a detailed proposal for the inhibition of DNA duplication and no inhibition of RNA viral infectivity. As a backbone, we introduced methyl phosphotriester (MPTE). Duplex formation according to the traditional Watson and Crick base-pairing: [(MPTE)<sub>n−1</sub> DNA] * DNA and [(MPTE)<sub>n−1</sub> DNA] * RNA, where n = number of DNA and RNA bases. However, in the latter case, inhibition is obtained by reduction of the number of MPTE linkages, as is confirmed with model experiments and under biological conditions with micro (mi)RNA substrates. The latter results have recently been published. One or more single MPTEs are disseminated over different places of DNA without neighbour MPTEs (Prof. Wen-Yih Chen and his group, Taiwan).
文摘Quantitative structure–activity relationship study using artificial neural network (ANN) methodology were conducted to predict the inhibition constants of 127 symmetrical and unsymmetrical cyclic urea and cyclic cyanoguanidine derivatives containing different substituent groups such as: benzyl, isopropyl, 4-hydroxybenzyl, ketone, oxime, pyrazole, imidazole, triazole and having anti-HIV-1 protease activities. The results obtained by artificial neural network give advanced regression models with good prediction ability. The two optimal artificial neural network models obtained have coefficients of determination of 0.746 and 0.756. The lowest prediction’s root mean square error obtained is 0.607. Artificial neural networks provide improved models for heterogeneous data sets without splitting them into families. Both the external and cross-validation methods are used to validate the performances of the resulting models. Randomization test is employed to check the suitability of the models.
基金supported by the Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period of China (2008ZX10001-002)Major Science and Technology Innovation Cross Project of the Chinese Academy of Sciences (KSCX1-YW-10)
文摘The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (MAPK) signal pathway can positively regulate the replication of HIV-1, but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood. In this study, we used the Extracellular signal-regulated kinase (ERK) pathway inhibitor, PD98059, the Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, and the p38 pathway inhibitor, SB203580, to investigate the roles of these pathways in HIV-1 replication. We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity. In addition, SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-INL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity. We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059 when cells were treated with all three MAPK pathway inhibitors in combination. Finally, we show that HIV-1 virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.
文摘Acquired immunodeficiency syndrome (AIDS) is a fatal disease which highly threatens the health of human being. Human immunodeficiency virus (HIV) is the pathogeny for this disease. Investigating HIV-1 protease cleavage sites can help researchers find or develop protease inhibitors which can restrain the replication of HIV-1, thus resisting AIDS. Feature selection is a new approach for solving the HIV-1 protease cleavage site prediction task and it’s a key point in our research. Comparing with the previous work, there are several advantages in our work. First, a filter method is used to eliminate the redundant features. Second, besides traditional orthogonal encoding (OE), two kinds of newly proposed features extracted by conducting principal component analysis (PCA) and non-linear Fisher transformation (NLF) on AAindex database are used. The two new features are proven to perform better than OE. Third, the data set used here is largely expanded to 1922 samples. Also to improve prediction performance, we conduct parameter optimization for SVM, thus the classifier can obtain better prediction capability. We also fuse the three kinds of features to make sure comprehensive feature representation and improve prediction performance. To effectively evaluate the prediction performance of our method, five parameters, which are much more than previous work, are used to conduct complete comparison. The experimental results of our method show that our method gain better performance than the state of art method. This means that the feature selection combined with feature fusion and classifier parameter optimization can effectively improve HIV-1 cleavage site prediction. Moreover, our work can provide useful help for HIV-1 protease inhibitor developing in the future.
文摘Site-directed spin-labeling with continuous wave electron paramagnetic resonance spectroscopy was used to monitor autoproteolysis of HIV-1 protease, an enzyme essential for viral maturation. Two protein constructs were examined, namely subtype F and the circulating recombinant form CRF01_A/E. As the protease undergoes self-cleavage, protein unfolds and small peptide fragments containing the spin label are generated, which collectively give rise to a sharp spectral component that is easily discernable in the high-field resonance line in the EPR spectrum. By monitoring the intensity of this spectral component over time, the autoproteolytic stability of each construct was characterized under various conditions. Data were collected for samples stored at 4 °C, 25 °C, and 37 °C, and on a subtype F HIV-1 protease sample stored at 25 °C and containing the FDA-approved protease inhibitor Tipranavir. As expected, the rate of autoproteolysis decreased as the storage temperature was lowered. Minimal autoproteolysis was seen for the sample that contained Tipranavir, providing direction for future spectroscopic studies of active protease samples. When compared to standard methods of monitoring protein degradation such as gel electrophoresis or chromatographic analyses, spin-labeling with CW EPR offers a facile, real-time, non-consuming way to monitor autoproteolysis or protein degradation. Additionally, mass spectrometry studies revealed that the N-termini of both constructs are sensitive to degradation and that the sites of specific autoproteolysis vary.
文摘Developing orally available small molecule inhibitors of HIV-1 fusion has attracted significant interest over many years. Frey had recently reported several synthetic compounds which are experimentally shown to inhibit cell-cell fusion in the low micromolar range. We carried out computational study to help identify possible binding modes by docking these compounds onto the hydrophobic pocket on gp41 and to characterize structures of binding complexes. The detailed gp41-molecule binding interactions and free energies of binding are obtained through mo- lecular dynamics simulation and MM-PBSA calculation. Specific molecular interactions in the gp41-inhibitor com- plexes are identified. The present computational study complements the corresponding experimental investigation and helps establish a good starting point for further refinement of small molecular gp41 inhibitors.
基金supported by the Natural Science Foundation of China(Grants No.11932017,11772055,11772054,11221202,11202026,and 11532009)the Fundamental Research Funds for the Central Universities(Grant No.2019QNA4060).
文摘The functions and activities of proteins are closely related to their structures and dynamics,and their interactions with ligands.Knowledge of the mechanistic events of proteins’conformational transitions and interactions with ligands is crucially important to understand the functions and biological activities of proteins and thus to the design of novel inhibitors of the targeted receptor.In this review article,taking two important systems as examples,i.e.,human immunodeficiency virus type 1 protease(HIV-1 PR)and adenylate kinase(AdK),and focusing on the molecular dynamics simulations of the conformational transitions of protein and the protein-ligand association/dissociation,we explain how the conformational transitions of proteins influence the interactions with their ligands,and how the ligands impact the function and dynamics of proteins.These results of structural dynamics of HIV-1 PR and AdK and their interactions with ligands can help to understand the principle of conformational transitions of proteins,or the interactions of ligands to their biological targets,and thus provide meaningful message in chemistry and biology of drug design and discovery.
文摘Salt influences protein stability through electrostatic mechanisms as well as through nonpolar Hofmeister effects.In the present work,a continuum solvation based model is developed to explore the impact of salt on protein stability.This model relies on a traditional Poisson-Boltzmann(PB)term to describe the polar or electrostatic effects of salt,and a surface area dependent term containing a salt concentration dependent microscopic surface tension function to capture the non-polar Hofmeister effects.The model is first validated against a series of cold-shock protein variants whose salt-dependent protein fold stability profiles have been previously determined experimentally.The approach is then applied to HIV-1 protease in order to explain an experimentally observed enhancement in stability and activity at high(1M)NaCl concentration.The inclusion of the salt-dependent non-polar term brings the model into quantitative agreement with experiment,and provides the basis for further studies into the impact of ionic strength on protein structure,function,and evolution.