Corrosion inhibition performances of three purine derivatives were investigated systematically by employing DFT and molecular modeling.The relationship between macroscopic inhibition efficiency and quantum chemical pr...Corrosion inhibition performances of three purine derivatives were investigated systematically by employing DFT and molecular modeling.The relationship between macroscopic inhibition efficiency and quantum chemical properties was discussed from multiple perspectives,based on frontier orbital theory,and Fukui function theories.Comparative experimental and theoretical studies were taken,indicating the inhibition efficiency could be analyzed in the order of guanine<2,6-diaminopurine<2,6-dithiopurine.The sulphur atom(S5)was validated to be the most susceptible site for electrophile via quantitative surface analysis.展开更多
Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulator...Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulators such as tannin,water glass,sodium carbon-ate,and sodium hexametaphosphate are more widely used in industry.However,they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests.Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing,we used a tannin pretreatment method for separating magnesite and dolomite.Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite.Moreover,the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased,respectively,in the presence of NaOl.Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface.X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite.展开更多
Osteoarthritis(OA)is a common degenerative disease worldwide and new therapeutics that target inflammation and the crosstalk between immunocytes and chondrocytes are being developed to prevent and treat OA.These attem...Osteoarthritis(OA)is a common degenerative disease worldwide and new therapeutics that target inflammation and the crosstalk between immunocytes and chondrocytes are being developed to prevent and treat OA.These attempts involve repolarizing pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype in synovium.In this study,we found that phosphoglycerate mutase 5(PGAM5)significantly increased in macrophages in OA synovium compared to controls based on histology of human samples and single-cell RNA sequencing results of mice models.To address the role of PGAM5 in macrophages in OA,we found conditional knockout of PGAM5 in macrophages greatly alleviated OA symptoms and promoted anabolic metabolism of chondrocytes in vitro and in vivo.Mechanistically,we found that PGAM5 enhanced M1 polarization via AKT-mTOR/p38/ERK pathways,whereas inhibited M2 polarization via STAT6-PPARγpathway in murine bone marrow-derived macrophages.Furthermore,we found that PGAM5 directly dephosphorylated Dishevelled Segment Polarity Protein 2(DVL2)which resulted in the inhibition ofβ-catenin and repolarization of M2 macrophages into M1 macrophages.Conditional knockout of both PGAM5 andβ-catenin in macrophages significantly exacerbated osteoarthritis compared to PGAM5-deficient mice.Motivated by these findings,we successfully designed mannose modified fluoropolymers combined with siPGAM5 to inhibit PGAM5 specifically in synovial macrophages via intra-articular injection,which possessed desired targeting abilities of synovial macrophages and greatly attenuated murine osteoarthritis.Collectively,these findings defined a key role for PGAM5 in orchestrating macrophage polarization and provides insights into novel macrophage-targeted strategy for treating OA.展开更多
Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s...Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.展开更多
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t...Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.展开更多
The autonomic nervous system plays a crucial role in regulating bone metabolism,with sympathetic activation stimulating bone resorption and inhibiting bone formation.We found that fractures lead to increased sympathet...The autonomic nervous system plays a crucial role in regulating bone metabolism,with sympathetic activation stimulating bone resorption and inhibiting bone formation.We found that fractures lead to increased sympathetic tone,enhanced osteoclast resorption,decreased osteoblast formation,and thus hastened systemic bone loss in ovariectomized(OVX)mice.However,the combined administration of parathyroid hormone(PTH)and theβ-receptor blocker propranolol dramatically promoted systemic bone formation and osteoporotic fracture healing in OVX mice.The effect of this treatment is superior to that of treatment with PTH or propranolol alone.In vitro,the sympathetic neurotransmitter norepinephrine(NE)suppressed PTH-induced osteoblast differentiation and mineralization,which was rescued by propranolol.Moreover,NE decreased the PTH-induced expression of Runx2 but enhanced the expression of Rankl and the effect of PTH-stimulated osteoblasts on osteoclastic differentiation,whereas these effects were reversed by propranolol.Furthermore,PTH increased the expression of the circadian clock gene Bmal1,which was inhibited by NE-βAR signaling.Bmal1 knockdown blocked the rescue effect of propranolol on the NE-induced decrease in PTHstimulated osteoblast differentiation.Taken together,these results suggest that propranolol enhances the anabolic effect of PTH in preventing systemic bone loss following osteoporotic fracture by blocking the negative effects of sympathetic signaling on PTH anabolism.展开更多
The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth invest...The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth investigation of repetitive motifs in various ice-binding proteins(IBPs)with evolution analysis.In this way,several peptides with notable antifreeze activity were developed.In particular,a designed antifreeze peptide named AVD exhibits ideal ice recrystallization inhibition(IRI),solubility,and biocompatibility,making it suitable for use as a cryoprotective agent(CPA).A mutation analysis and molecular dynamics(MD)simulations indicated that the Thr6 and Asn8 residues of the AVD peptide are fundamental to its ice-binding capacity,while the Ser18 residue can synergistically enhance their interaction with ice,revealing the antifreeze mechanism of AVD.Furthermore,to evaluate the cryoprotection potential of AVD,the peptide was successfully employed for the cryopreservation of various cells,which demonstrated significant post-freezing cell recovery.This work opens up a new avenue for designing antifreeze materials and provides peptide-based functional modules for synthetic biology.展开更多
α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in var...α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in various plant foods but also as a major microbial metabolite of dietary anthocyanins in the large colon.The present study investigated the inhibitory mechanism of PCA on a-glucosidase in vitro and examined its effect on postprandial blood glucose levels in vivo.Results from in vitro experiments demonstrated that PCA was a mix-type inhibitor of a-glucosidase.Driven by hydrogen bonds and van der Waals interactions,PCA reversibly bound withα-glucosidase to form a stable a-glucosidase-PCA complex in a spontaneous manner.The computational simulation found that PCA could insert into the active cavity of a-glucosidase and establish hydrogen bonds with catalytic amino acid residues.PCA binding aroused the steric hindrance for substrates to enter active sites and caused the structural changes of interacted catalytic amino acid residues.PCA also exhibited postprandial hypoglycemic capacity in diabetic mice.This study may provide the theoretical basis for the application of PCA as an active ingredient of functional foods in dietary management of diabetes.展开更多
The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electro...The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).展开更多
Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the...Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.展开更多
Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing d...Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing demand in special fields for the development of surfaces that can resist wetting by high-temperature molten droplets(>1200°C)using facile design and fabrication strategies.Herein,bioinspired directional structures(BDSs)were prepared on Y2O3-stabilized ZrO2(YSZ)surfaces using femtosecond laser ablation.Benefiting from the anisotropic energy barriers,the BDSs featured with no additional modifiers showed a remarkable increase from 9.2°to 60°in the contact angle of CaO–MgO–Al2O3–SiO2(CMAS)melt and a 70.1%reduction in the spreading area of CMAS at 1250°C,compared with polished super-CMAS-melt-philic YSZ surfaces.Moreover,the BDSs demonstrated exceptional wetting inhibition even at 1400°C,with an increase from 3.3°to 31.3°in contact angle and a 67.9%decrease in spreading area.This work provides valuable insight and a facile preparation strategy for effectively inhibiting the wetting of molten droplets on super-melt-philic surfaces at extremely high temperatures.展开更多
The two-spotted spider mite,Tetranychus urticae Koch,is one of the most harmful pests in many agroecosystems worldwide.To effectively manage this pest,there is an urgent need to develop novel bio-active acaricides tha...The two-spotted spider mite,Tetranychus urticae Koch,is one of the most harmful pests in many agroecosystems worldwide.To effectively manage this pest,there is an urgent need to develop novel bio-active acaricides that support integrated pest management strategies targeting T.urticae.In this study,we explored the acaricidal effects of xenocoumacin 1 (Xcn1) on T.urticae and its predator Neoseiulus californicus using the highly puri?ed compound.Xcn1 was extracted and purified from the cell-free supernatant of the Xenorhabdus nematophila CB6 mutant constructed by the easy promoter activated compound identi?cation (easyPACId) method.When the concentration of Xcn1 exceeded 100μg mL~(–1),the survival rate of spider mite adults declined to below 40%and the fecundity was decreased by 80%at six days post-application.At concentrations of 25 and 50μg mL~(–1),Xcn1 signi?cantly impeded spider mite development by inhibiting the molt.However,neither concentration had any adverse effects on the survival or reproduction of the predatory mite N.californicus.The results from laboratory and semi-?eld experiments consistently demonstrated the effectiveness of the antimicrobial metabolite Xcn1 in controlling pest mites at both the molecular and physiological levels.Our study offers a promising possibility that combines the compatible biocontrol agents of Xcn1 and predatory mites for integrated pest mite control.展开更多
Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not bee...Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not been very effective in high-temperature drilling operations. Thermo-responsive Janus nanocomposites are expected to strongly interact with clay particles from the inward hemisphere of nanomaterials, which drive the establishment of a tighter hydrophobic membrane over the shale surface at the outward hemisphere under geothermal conditions for shale stabilization. This work combines the synergistic benefits of thermo-responsive and zwitterionic nanomaterials to synchronously enhance the chemical inhibitions and plugging performances in shale under harsh conditions. A novel thermoresponsive Janus nanosilica(TRJS) exhibiting zwitterionic character was synthesized, characterized,and assessed as shale stabilizer for WBDFs at high temperatures. Compared to pristine nanosilica(Si NP)and symmetrical thermo-responsive nanosilica(TRS), TRJS exhibited anti-polyelectrolyte behaviour, in which electrolyte ions screened the electrostatic attraction between the charged particles, potentially stabilizing nanomaterial in hostile shaly environments(i.e., up to saturated brine or API brine). Macroscopically, TRJS exhibited higher chemical inhibition than Si NP and TRS in brine, prompting a better capability to control pressure penetration. TRJS adsorbed onto the clay surface via chemisorption and hydrogen bonding, and the interactions became substantial in brine, according to the results of electrophoretic mobility, surface wettability, and X-ray diffraction. Thus, contributing to the firm trapping of TRJS into the nanopore structure of the shale, triggering the formation of a tight hydrophobic membrane over the shale surface from the outward hemisphere. The addition of TRJS into WBDF had no deleterious effect on fluid properties after hot-treatment at 190℃, implying that TRJS could find potential use as a shale stabilizer in WBDFs in hostile environments.展开更多
n-Caproate,which is produced via chain elongation(CE)using waste biomass,can supply various fossilderived products,thus advancing the realization of carbon neutrality.Ammonia released from the degradation of nitrogen-...n-Caproate,which is produced via chain elongation(CE)using waste biomass,can supply various fossilderived products,thus advancing the realization of carbon neutrality.Ammonia released from the degradation of nitrogen-rich waste biomass can act as a nutrient or an inhibitor in anaerobic bioprocesses,including CE,with the distinction being primarily dependent on its concentration.Currently,the optimal concentration of ammonia and the threshold of toxicity for open-culture n-caproate production using ethanol as an electron donor,along with the underlying mechanisms,remain unclear.This study revealed that the optimal concentration of ammonia for n-caproate production was 2.0 g∙L^(-1),whereas concentrations exceeding this threshold markedly suppressed the CE performance.Exploration of the mechanism revealed the involvement of two forms of ammonia(i.e.,ammonium ions and free ammonia)in this inhibitory behavior.High ammonia levels(5.0 g∙L^(-1))induced excessive ethanol oxidation and suppressed the reverse β-oxidation(RBO)process,directly leading to the enhanced activities of enzymes(phosphotransacetylase and acetate kinase)responsible for acetate formation and diminished activities of butyryl-coenzyme A(CoA):acetyl-CoA transferase,caproyl-CoA:butyryl-CoA transferase,and caproyl-CoA:acetyl-CoA transferase that are involved in the syntheses of n-butyrate and n-caproate.Furthermore,the composition of the microbial community shifted from Paraclostridium dominance(at 0.1 g∙L^(-1)ammonia)to a co-dominance of Fermentimonas,Clostridium sensu stricto 12,and Clostridium sensu stricto 15 at 2.0 g∙L^(-1)ammonia.However,these CE-functional bacteria were mostly absent in the presence of excessive ammonia(5.0 g∙L^(-1)ammonia).Metagenomic analysis revealed the upregulation of functions such as RBO,fatty acid synthesis,K^(+)efflux,adenosine triphosphatase(ATPase)metabolism,and metal cation export in the presence of 2.0 g∙L^(-1)ammonia,collectively contributing to enhanced n-caproate production.Conversely,the aforementioned functions(excluding metal cation export)and K^(+)influx were suppressed by excessive ammonia,undermining both ammonia detoxification and n-caproate biosynthesis.The comprehensive elucidation of ammonia-driven mechanisms influencing n-caproate production,as provided in this study,is expected to inspire researchers to devise effective strategies to alleviate ammonia-induced inhibition.展开更多
Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly un...Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly understood.Here,we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution.Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response(IR),bone remodeling(BR),tooth development(TD),epithelial development(ED),and cell cycle(CC)signatures.Of note,we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence,which was dominated by the EZH2-mediated program.Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids.These data described the tumor subpopulation and clarified the identity,function,and regulatory mechanism of CC ameloblastoma cells,providing a potential therapeutic target for ameloblastoma.展开更多
In a recent publication,Hu et al.(2023)have reported that individuals with high trait anxiety exhibit attentional deficits characterized by reduced inhibition of distractors and delayed attentional selection of target...In a recent publication,Hu et al.(2023)have reported that individuals with high trait anxiety exhibit attentional deficits characterized by reduced inhibition of distractors and delayed attentional selection of targets,indicating impaired top-down attentional control.This commentary underscores their significant contributions to the cognitive theory of anxiety.Based on their findings,we propose a novel training approach called attentional inhibition training(AIT),aimed at improving top-down attentional control to alleviate symptoms of anxiety.Furthermore,we explore the potential application of non-invasive transcranial magnetic stimulation(TMS)for rapidly enhancing attentional control function.展开更多
Acceleration of tooth movement during orthodontic treatment is challenging, with osteoclast-mediated bone resorption on the compressive side being the rate-limiting step. Recent studies have demonstrated that mechanor...Acceleration of tooth movement during orthodontic treatment is challenging, with osteoclast-mediated bone resorption on the compressive side being the rate-limiting step. Recent studies have demonstrated that mechanoreceptors on the surface of monocytes/macrophages, especially adhesion G protein-coupled receptors (aGPCRs), play important roles in force sensing.However, its role in the regulation of osteoclast differentiation remains unclear. Herein, through single-cell analysis, we revealed that CD97, a novel mechanosensitive aGPCR, was expressed in macrophages. Compression upregulated CD97 expression and inhibited osteoclast differentiation;while knockdown of CD97 partially rescued osteoclast differentiation. It suggests that CD97 may be an important mechanosensitive receptor during osteoclast differentiation. RNA sequencing analysis showed that the Rap1a/ERK signalling pathway mediates the effects of CD97 on osteoclast differentiation under compression. Consistently, we clarified that administration of the Rap1a inhibitor GGTI298 increased osteoclast activity, thereby accelerating tooth movement. In conclusion,our results indicate that CD97 suppresses osteoclast differentiation through the Rap1a/ERK signalling pathway under orthodontic compressive force.展开更多
Bone marrow adipocytes(BMAds)affect bone homeostasis,but the mechanism remains unclear.Here,we showed that exercise inhibited PCNA clamp-associated factor(PCLAF)secretion from the bone marrow macrophages to inhibit BM...Bone marrow adipocytes(BMAds)affect bone homeostasis,but the mechanism remains unclear.Here,we showed that exercise inhibited PCNA clamp-associated factor(PCLAF)secretion from the bone marrow macrophages to inhibit BMAds senescence and thus alleviated skeletal aging.展开更多
Mammalian teeth,developing inseparable from epithelial-mesenchymal interaction,come in many shapes and the key factors governing tooth morphology deserve to be answered.By merging single-cell RNA sequencing analysis w...Mammalian teeth,developing inseparable from epithelial-mesenchymal interaction,come in many shapes and the key factors governing tooth morphology deserve to be answered.By merging single-cell RNA sequencing analysis with lineage tracing models,we have unearthed a captivating correlation between the contrasting morphology of mouse molars and the specific presence of PRX1^(+)cells within M1.These PRX1^(+)cells assume a profound responsibility in shaping tooth morphology through a remarkable divergence in dental mesenchymal cell proliferation.Deeper into the mechanisms,we have discovered that Wnt5a,bestowed by mesenchymal PRX1^(+)cells,stimulates mesenchymal cell proliferation while orchestrating molar morphogenesis through WNT signaling pathway.The loss of Wnt5a exhibits a defect phenotype similar to that of siPrx1.Exogenous addition of WNT5A can successfully reverse the inhibited cell proliferation and consequent deviant appearance exhibited in Prx1-deficient tooth germs.These findings bestow compelling evidence of PRX1-positive mesenchymal cells to be potential target in regulating tooth morphology.展开更多
Glucose is the primary fuel source of the brain,and therefore glucose levels need to be tightly regulated and maintained within a small physiological range.Certainly,the body necessitates a stable supply of energy mai...Glucose is the primary fuel source of the brain,and therefore glucose levels need to be tightly regulated and maintained within a small physiological range.Certainly,the body necessitates a stable supply of energy mainly provided by glucose for various bodily functions.High or low blood glucose levels would impair the physiological functions of various organs of the body.展开更多
基金support from National Natural Science Foundation of China(No.51438003,No.51508091,No.51578143)This work was also supported by the National Basic Research Program of China“973 Project”(No.2015CB655105).
文摘Corrosion inhibition performances of three purine derivatives were investigated systematically by employing DFT and molecular modeling.The relationship between macroscopic inhibition efficiency and quantum chemical properties was discussed from multiple perspectives,based on frontier orbital theory,and Fukui function theories.Comparative experimental and theoretical studies were taken,indicating the inhibition efficiency could be analyzed in the order of guanine<2,6-diaminopurine<2,6-dithiopurine.The sulphur atom(S5)was validated to be the most susceptible site for electrophile via quantitative surface analysis.
基金supported by the National Natural Science Foundation of China (Nos.51974064,52174239,and 52374259)the Open Project of the Key Laboratory of Solid Waste Treatment and Resource Utiliza-tion of the Ministry of Education,China (No.23kfgk02).
文摘Flotation separation of magnesite and its calcium-containing carbonate minerals is a difficult problem.Recently,new regulat-ors have been proposed for magnesite flotation decalcification,although traditional regulators such as tannin,water glass,sodium carbon-ate,and sodium hexametaphosphate are more widely used in industry.However,they are rarely used as the main regulators in research because they perform poorly in magnesite and dolomite single-mineral flotation tests.Inspired by the limonite presedimentation method and the addition of a regulator to magnesite slurry mixing,we used a tannin pretreatment method for separating magnesite and dolomite.Microflotation experiments confirmed that the tannin pretreatment method selectively and largely reduces the flotation recovery rate of dolomite without affecting the flotation recovery rate of magnesite.Moreover,the contact angles of the tannin-pretreated magnesite and dolomite increased and decreased,respectively,in the presence of NaOl.Zeta potential and Fourier transform infrared analyses showed that the tannin pretreatment method efficiently hinders NaOl adsorption on the dolomite surface but does not affect NaOl adsorption on the magnesite surface.X-ray photoelectron spectroscopy and density functional theory calculations confirmed that tannin interacts more strongly with dolomite than with magnesite.
基金This work was supported by grants from National Natural Science Foundation of China(81830078,82071868,32370892)Science and Technology Commission of Shanghai Municipality(23141901200)+2 种基金Health Commission of Shanghai Municipality(2022JC029)Biomaterials and Regenerative Medicine Institute Cooperative Research Project,Shanghai Jiaotong University School of Medicine(2022LHA11)Shanghai Key Laboratory of Orthopedic Implant(No.KFKT202206).
文摘Osteoarthritis(OA)is a common degenerative disease worldwide and new therapeutics that target inflammation and the crosstalk between immunocytes and chondrocytes are being developed to prevent and treat OA.These attempts involve repolarizing pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype in synovium.In this study,we found that phosphoglycerate mutase 5(PGAM5)significantly increased in macrophages in OA synovium compared to controls based on histology of human samples and single-cell RNA sequencing results of mice models.To address the role of PGAM5 in macrophages in OA,we found conditional knockout of PGAM5 in macrophages greatly alleviated OA symptoms and promoted anabolic metabolism of chondrocytes in vitro and in vivo.Mechanistically,we found that PGAM5 enhanced M1 polarization via AKT-mTOR/p38/ERK pathways,whereas inhibited M2 polarization via STAT6-PPARγpathway in murine bone marrow-derived macrophages.Furthermore,we found that PGAM5 directly dephosphorylated Dishevelled Segment Polarity Protein 2(DVL2)which resulted in the inhibition ofβ-catenin and repolarization of M2 macrophages into M1 macrophages.Conditional knockout of both PGAM5 andβ-catenin in macrophages significantly exacerbated osteoarthritis compared to PGAM5-deficient mice.Motivated by these findings,we successfully designed mannose modified fluoropolymers combined with siPGAM5 to inhibit PGAM5 specifically in synovial macrophages via intra-articular injection,which possessed desired targeting abilities of synovial macrophages and greatly attenuated murine osteoarthritis.Collectively,these findings defined a key role for PGAM5 in orchestrating macrophage polarization and provides insights into novel macrophage-targeted strategy for treating OA.
基金supported by the National Natural Science Foundation of China (31901462 and 31671613).
文摘Bacillus thuringiensis(Bt)cotton production is challenged by two main problems,i.e.,the low concentration of Bt protein at the boll setting stage and the lowest insect resistance in bolls among all the cotton plant’s organs.Therefore,increasing the Bt protein concentration at the boll stage,especially in bolls,has become the main goal for increasing insect resistance in cotton.In this study,two protein degradation inhibitors(ethylene diamine tetra acetic acid(EDTA)and leupeptin)were sprayed on the bolls,subtending leaves,and whole cotton plants at the peak flowering stage of two Bt cultivars(medium maturation Sikang 1(SK1))and early maturation Zhongmian 425(ZM425)in 2019 and 2020.The Bt protein content and protein degradation metabolism were assessed.The results showed that the Bt protein concentrations were enhanced by 21.3 to 38.8%and 25.0 to 38.6%in the treated bolls of SK1 and ZM425 respectively,while they were decreased in the subtending leaves of these treated bolls.In the treated leaves,the Bt protein concentrations increased by 7.6 to 23.5%and 11.2 to 14.9%in SK1 and ZM425,respectively.The combined application of EDTA and leupeptin to the whole cotton plant increased the Bt protein concentrations in both bolls and subtending leaves.The Bt protein concentrations in bolls were higher,increasing by 22.5 to 31.0%and 19.6 to 32.5%for SK1 and ZM425,respectively.The organs treated with EDTA or/and leupeptin showed reduced free amino acid contents,protease and peptidase activities and significant enhancements in soluble protein contents.These results indicated that inhibiting protein degradation could improve the protein content,thus increasing the Bt protein concentrations in the bolls or/and leaves of cotton plants.Therefore,the increase in the Bt protein concentration without yield reduction suggested that these two protein degradation inhibitors may be applicable for improving insect resistance in cotton production.
基金funds from the National Natural Science Foundation of China(51772082 and 51804106)the Natural Science Foundation of Hunan Province(2023JJ10005)
文摘Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.
基金supported by the National Natural Science Foundation of China(Grant Nos.82330078,81874010)the National Key Research and Development Program(Grant Nos.2020YFC2009004,2021YFC2501700).
文摘The autonomic nervous system plays a crucial role in regulating bone metabolism,with sympathetic activation stimulating bone resorption and inhibiting bone formation.We found that fractures lead to increased sympathetic tone,enhanced osteoclast resorption,decreased osteoblast formation,and thus hastened systemic bone loss in ovariectomized(OVX)mice.However,the combined administration of parathyroid hormone(PTH)and theβ-receptor blocker propranolol dramatically promoted systemic bone formation and osteoporotic fracture healing in OVX mice.The effect of this treatment is superior to that of treatment with PTH or propranolol alone.In vitro,the sympathetic neurotransmitter norepinephrine(NE)suppressed PTH-induced osteoblast differentiation and mineralization,which was rescued by propranolol.Moreover,NE decreased the PTH-induced expression of Runx2 but enhanced the expression of Rankl and the effect of PTH-stimulated osteoblasts on osteoclastic differentiation,whereas these effects were reversed by propranolol.Furthermore,PTH increased the expression of the circadian clock gene Bmal1,which was inhibited by NE-βAR signaling.Bmal1 knockdown blocked the rescue effect of propranolol on the NE-induced decrease in PTHstimulated osteoblast differentiation.Taken together,these results suggest that propranolol enhances the anabolic effect of PTH in preventing systemic bone loss following osteoporotic fracture by blocking the negative effects of sympathetic signaling on PTH anabolism.
基金supported by the National Key Research and Development Program of China (2021YFC2100800)the National Natural Science Foundation of China (22078238,21961132005,and 21908160)+1 种基金the Open Funding Project of the National Key Laboratory of Biochemical Engineeringthe Program of Introducing Talents of Discipline to Universities (BP0618007)。
文摘The development of effective antifreeze peptides to control ice growth has attracted a significant amount of attention yet still remains a great challenge.Here,we propose a novel design method based on in-depth investigation of repetitive motifs in various ice-binding proteins(IBPs)with evolution analysis.In this way,several peptides with notable antifreeze activity were developed.In particular,a designed antifreeze peptide named AVD exhibits ideal ice recrystallization inhibition(IRI),solubility,and biocompatibility,making it suitable for use as a cryoprotective agent(CPA).A mutation analysis and molecular dynamics(MD)simulations indicated that the Thr6 and Asn8 residues of the AVD peptide are fundamental to its ice-binding capacity,while the Ser18 residue can synergistically enhance their interaction with ice,revealing the antifreeze mechanism of AVD.Furthermore,to evaluate the cryoprotection potential of AVD,the peptide was successfully employed for the cryopreservation of various cells,which demonstrated significant post-freezing cell recovery.This work opens up a new avenue for designing antifreeze materials and provides peptide-based functional modules for synthetic biology.
基金supported by the General Research Fund of Hong Kong (14105820)。
文摘α-Glucosidase inhibitors are effective in controlling postprandial hyperglycemia,which play crucial roles in the management of type 2 diabetes.Protocatechuic acid(PCA)is one of phenolic acids existing not only in various plant foods but also as a major microbial metabolite of dietary anthocyanins in the large colon.The present study investigated the inhibitory mechanism of PCA on a-glucosidase in vitro and examined its effect on postprandial blood glucose levels in vivo.Results from in vitro experiments demonstrated that PCA was a mix-type inhibitor of a-glucosidase.Driven by hydrogen bonds and van der Waals interactions,PCA reversibly bound withα-glucosidase to form a stable a-glucosidase-PCA complex in a spontaneous manner.The computational simulation found that PCA could insert into the active cavity of a-glucosidase and establish hydrogen bonds with catalytic amino acid residues.PCA binding aroused the steric hindrance for substrates to enter active sites and caused the structural changes of interacted catalytic amino acid residues.PCA also exhibited postprandial hypoglycemic capacity in diabetic mice.This study may provide the theoretical basis for the application of PCA as an active ingredient of functional foods in dietary management of diabetes.
基金financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC),through the Discovery Grant Program (RGPIN-2018-06725)the Discovery Accelerator Supplement Grant program (RGPAS-2018-522651)+2 种基金the New Frontiers in Research Fund-Exploration program (NFRFE-2019-00488)supported by funding from the Canada First Research Excellence Fund as part of the University of Alberta’s Future Energy Systems research initiative (FES-T06-Q03)supported by the Chinese Scholarship Council (CSC)(Grant No. 202006450027).
文摘The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).
基金The National Natural Science Foundation of China under contract No.41721005the Fund of the Ministry of Natural Resources of the People’s Republic of China under contract Nos IRASCC 02-01-01 and 01-01-02C.
文摘Nitrification,a central process in the marine nitrogen cycle,produces regenerated nitrate in the euphotic zone and emits N_(2)O,a potent greenhouse gas as a by-product.The regulatory mechanisms of nitrification in the Southern Ocean,which is a critical region for CO_(2)sequestration and radiative benefits,remain poorly understood.Here,we investigated the in situ and dark nitrification rates in the upper 500 m and conducted substrate kinetics experiments across the Indian Sector in the Cosmonaut and Cooperation seas in the late austral summer.Our findings indicate that light inhibition of nitrification decreases exponentially with depth,exhibiting a light threshold of 0.53%photosynthetically active radiation.A positive relationship between dark nitrification and apparent oxygen utilization suggests a dependence on substrate availability from primary production.Importantly,an increased NH_(4)^(+) supply can act as a buffer against photo-inhibitory damage.Globally,substrate affinity(α)increases with depth and transitions from light to dark,decreases with increasing ambient NH_(4)^(+)and exhibits a latitudinal distribution,reflecting substrate utilization strategies.We also reveal that upwelling in Circumpolar Deep Water(CDW)stimulates nitrification through the introduction of potentially higher iron and deep diverse nitrifying microorganisms with higherα.We conclude that although light is the primary limiting factor for nitrification in summer,coupling between substrate availability and CDW upwelling can overcome this limitation,thereby alleviating photoinhibition by up to 45%±5.3%.
基金This work was supported by National Natural Science Foundation of China(No.52105212)Sichuan Science and Technology Program(No.2023NSFSC0863)China Postdoctoral Science Foundation(No.2021M702712).
文摘Over the past two decades,superhydrophobic surfaces that are easily created have aroused considerable attention for their superior performances in various applications at room temperature.Nowadays,there is a growing demand in special fields for the development of surfaces that can resist wetting by high-temperature molten droplets(>1200°C)using facile design and fabrication strategies.Herein,bioinspired directional structures(BDSs)were prepared on Y2O3-stabilized ZrO2(YSZ)surfaces using femtosecond laser ablation.Benefiting from the anisotropic energy barriers,the BDSs featured with no additional modifiers showed a remarkable increase from 9.2°to 60°in the contact angle of CaO–MgO–Al2O3–SiO2(CMAS)melt and a 70.1%reduction in the spreading area of CMAS at 1250°C,compared with polished super-CMAS-melt-philic YSZ surfaces.Moreover,the BDSs demonstrated exceptional wetting inhibition even at 1400°C,with an increase from 3.3°to 31.3°in contact angle and a 67.9%decrease in spreading area.This work provides valuable insight and a facile preparation strategy for effectively inhibiting the wetting of molten droplets on super-melt-philic surfaces at extremely high temperatures.
基金supported by the National Natural Science Foundation of China(32070402)the Beijing Natural Science Foundation,China(6222052)。
文摘The two-spotted spider mite,Tetranychus urticae Koch,is one of the most harmful pests in many agroecosystems worldwide.To effectively manage this pest,there is an urgent need to develop novel bio-active acaricides that support integrated pest management strategies targeting T.urticae.In this study,we explored the acaricidal effects of xenocoumacin 1 (Xcn1) on T.urticae and its predator Neoseiulus californicus using the highly puri?ed compound.Xcn1 was extracted and purified from the cell-free supernatant of the Xenorhabdus nematophila CB6 mutant constructed by the easy promoter activated compound identi?cation (easyPACId) method.When the concentration of Xcn1 exceeded 100μg mL~(–1),the survival rate of spider mite adults declined to below 40%and the fecundity was decreased by 80%at six days post-application.At concentrations of 25 and 50μg mL~(–1),Xcn1 signi?cantly impeded spider mite development by inhibiting the molt.However,neither concentration had any adverse effects on the survival or reproduction of the predatory mite N.californicus.The results from laboratory and semi-?eld experiments consistently demonstrated the effectiveness of the antimicrobial metabolite Xcn1 in controlling pest mites at both the molecular and physiological levels.Our study offers a promising possibility that combines the compatible biocontrol agents of Xcn1 and predatory mites for integrated pest mite control.
基金financially supported by the National Natural Science Foundation of China(Grant No.52150410427)the Key Support Program for Foreign Experts of the Ministry of Science and Technology of the People's Republic of China(No.wgxz2022057)funding for post-doctoral work by the Department of Human Resources and Social Security of Hubei Province。
文摘Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not been very effective in high-temperature drilling operations. Thermo-responsive Janus nanocomposites are expected to strongly interact with clay particles from the inward hemisphere of nanomaterials, which drive the establishment of a tighter hydrophobic membrane over the shale surface at the outward hemisphere under geothermal conditions for shale stabilization. This work combines the synergistic benefits of thermo-responsive and zwitterionic nanomaterials to synchronously enhance the chemical inhibitions and plugging performances in shale under harsh conditions. A novel thermoresponsive Janus nanosilica(TRJS) exhibiting zwitterionic character was synthesized, characterized,and assessed as shale stabilizer for WBDFs at high temperatures. Compared to pristine nanosilica(Si NP)and symmetrical thermo-responsive nanosilica(TRS), TRJS exhibited anti-polyelectrolyte behaviour, in which electrolyte ions screened the electrostatic attraction between the charged particles, potentially stabilizing nanomaterial in hostile shaly environments(i.e., up to saturated brine or API brine). Macroscopically, TRJS exhibited higher chemical inhibition than Si NP and TRS in brine, prompting a better capability to control pressure penetration. TRJS adsorbed onto the clay surface via chemisorption and hydrogen bonding, and the interactions became substantial in brine, according to the results of electrophoretic mobility, surface wettability, and X-ray diffraction. Thus, contributing to the firm trapping of TRJS into the nanopore structure of the shale, triggering the formation of a tight hydrophobic membrane over the shale surface from the outward hemisphere. The addition of TRJS into WBDF had no deleterious effect on fluid properties after hot-treatment at 190℃, implying that TRJS could find potential use as a shale stabilizer in WBDFs in hostile environments.
基金supported by the Natural Science Foundation of Sichuan Province(2022NSFSC1042)the National Natural Science Foundation of China(52000132)the Open Project of the State Key Laboratory of Urban Water Resource and Environment(HC202241).
文摘n-Caproate,which is produced via chain elongation(CE)using waste biomass,can supply various fossilderived products,thus advancing the realization of carbon neutrality.Ammonia released from the degradation of nitrogen-rich waste biomass can act as a nutrient or an inhibitor in anaerobic bioprocesses,including CE,with the distinction being primarily dependent on its concentration.Currently,the optimal concentration of ammonia and the threshold of toxicity for open-culture n-caproate production using ethanol as an electron donor,along with the underlying mechanisms,remain unclear.This study revealed that the optimal concentration of ammonia for n-caproate production was 2.0 g∙L^(-1),whereas concentrations exceeding this threshold markedly suppressed the CE performance.Exploration of the mechanism revealed the involvement of two forms of ammonia(i.e.,ammonium ions and free ammonia)in this inhibitory behavior.High ammonia levels(5.0 g∙L^(-1))induced excessive ethanol oxidation and suppressed the reverse β-oxidation(RBO)process,directly leading to the enhanced activities of enzymes(phosphotransacetylase and acetate kinase)responsible for acetate formation and diminished activities of butyryl-coenzyme A(CoA):acetyl-CoA transferase,caproyl-CoA:butyryl-CoA transferase,and caproyl-CoA:acetyl-CoA transferase that are involved in the syntheses of n-butyrate and n-caproate.Furthermore,the composition of the microbial community shifted from Paraclostridium dominance(at 0.1 g∙L^(-1)ammonia)to a co-dominance of Fermentimonas,Clostridium sensu stricto 12,and Clostridium sensu stricto 15 at 2.0 g∙L^(-1)ammonia.However,these CE-functional bacteria were mostly absent in the presence of excessive ammonia(5.0 g∙L^(-1)ammonia).Metagenomic analysis revealed the upregulation of functions such as RBO,fatty acid synthesis,K^(+)efflux,adenosine triphosphatase(ATPase)metabolism,and metal cation export in the presence of 2.0 g∙L^(-1)ammonia,collectively contributing to enhanced n-caproate production.Conversely,the aforementioned functions(excluding metal cation export)and K^(+)influx were suppressed by excessive ammonia,undermining both ammonia detoxification and n-caproate biosynthesis.The comprehensive elucidation of ammonia-driven mechanisms influencing n-caproate production,as provided in this study,is expected to inspire researchers to devise effective strategies to alleviate ammonia-induced inhibition.
基金supported by the National Natural Science Foundation of China(82141112)Guangdong Financial Fund for High-Caliber Hospital Construction(174-2018-XMZC-0001-03-0125/D-14)C.W.and the Clinical Research Program of 9th People’s Hospital,Shanghai Jiao Tong University School of Medicine(JYLJ202112).
文摘Ameloblastoma is a benign tumor characterized by locally invasive phenotypes,leading to facial bone destruction and a high recurrence rate.However,the mechanisms governing tumor initiation and recurrence are poorly understood.Here,we uncovered cellular landscapes and mechanisms that underlie tumor recurrence in ameloblastoma at single-cell resolution.Our results revealed that ameloblastoma exhibits five tumor subpopulations varying with respect to immune response(IR),bone remodeling(BR),tooth development(TD),epithelial development(ED),and cell cycle(CC)signatures.Of note,we found that CC ameloblastoma cells were endowed with stemness and contributed to tumor recurrence,which was dominated by the EZH2-mediated program.Targeting EZH2 effectively eliminated CC ameloblastoma cells and inhibited tumor growth in ameloblastoma patient-derived organoids.These data described the tumor subpopulation and clarified the identity,function,and regulatory mechanism of CC ameloblastoma cells,providing a potential therapeutic target for ameloblastoma.
文摘In a recent publication,Hu et al.(2023)have reported that individuals with high trait anxiety exhibit attentional deficits characterized by reduced inhibition of distractors and delayed attentional selection of targets,indicating impaired top-down attentional control.This commentary underscores their significant contributions to the cognitive theory of anxiety.Based on their findings,we propose a novel training approach called attentional inhibition training(AIT),aimed at improving top-down attentional control to alleviate symptoms of anxiety.Furthermore,we explore the potential application of non-invasive transcranial magnetic stimulation(TMS)for rapidly enhancing attentional control function.
基金supported by the Natural Science Foundation of Hebei Province (H2020206226)Hebei Province Science and Technology Support Program (18277756D)+1 种基金the Science and Technology Research Project of Hebei Higher Education Institutions (ZD2022010)High-level Talent Funding Project of Hebei (C20231141) to W.W。
文摘Acceleration of tooth movement during orthodontic treatment is challenging, with osteoclast-mediated bone resorption on the compressive side being the rate-limiting step. Recent studies have demonstrated that mechanoreceptors on the surface of monocytes/macrophages, especially adhesion G protein-coupled receptors (aGPCRs), play important roles in force sensing.However, its role in the regulation of osteoclast differentiation remains unclear. Herein, through single-cell analysis, we revealed that CD97, a novel mechanosensitive aGPCR, was expressed in macrophages. Compression upregulated CD97 expression and inhibited osteoclast differentiation;while knockdown of CD97 partially rescued osteoclast differentiation. It suggests that CD97 may be an important mechanosensitive receptor during osteoclast differentiation. RNA sequencing analysis showed that the Rap1a/ERK signalling pathway mediates the effects of CD97 on osteoclast differentiation under compression. Consistently, we clarified that administration of the Rap1a inhibitor GGTI298 increased osteoclast activity, thereby accelerating tooth movement. In conclusion,our results indicate that CD97 suppresses osteoclast differentiation through the Rap1a/ERK signalling pathway under orthodontic compressive force.
基金supported by the National Key R&D Program of China (2021YFC2501702)the National Natural Science Foundation of China,China (grant nos.82270911,82201746,82000848,82300998)+1 种基金the National Key Research and Development Plan (2022YFC3601900,2022YFC3601901,2022YFC3601902,2022YFC3601903,2022YFC3601904,and 2022YFC3601905)the Key Research and Development Program of Hunan Province,China (2022WK2010)。
文摘Bone marrow adipocytes(BMAds)affect bone homeostasis,but the mechanism remains unclear.Here,we showed that exercise inhibited PCNA clamp-associated factor(PCLAF)secretion from the bone marrow macrophages to inhibit BMAds senescence and thus alleviated skeletal aging.
基金financial support of the National Natural Science Foundation of China(82270963,82061130222)awarded to Y.S.
文摘Mammalian teeth,developing inseparable from epithelial-mesenchymal interaction,come in many shapes and the key factors governing tooth morphology deserve to be answered.By merging single-cell RNA sequencing analysis with lineage tracing models,we have unearthed a captivating correlation between the contrasting morphology of mouse molars and the specific presence of PRX1^(+)cells within M1.These PRX1^(+)cells assume a profound responsibility in shaping tooth morphology through a remarkable divergence in dental mesenchymal cell proliferation.Deeper into the mechanisms,we have discovered that Wnt5a,bestowed by mesenchymal PRX1^(+)cells,stimulates mesenchymal cell proliferation while orchestrating molar morphogenesis through WNT signaling pathway.The loss of Wnt5a exhibits a defect phenotype similar to that of siPrx1.Exogenous addition of WNT5A can successfully reverse the inhibited cell proliferation and consequent deviant appearance exhibited in Prx1-deficient tooth germs.These findings bestow compelling evidence of PRX1-positive mesenchymal cells to be potential target in regulating tooth morphology.
基金supported by grants from the NIH(P01DK113954,R01DK115761,R01DK117281,R01DK125480 and R01DK120858 to YXR01DK129548 to YH)+1 种基金USDA/CRIS(51000-064-01S to YX)Postdoctoral Fellowship(2020AHA000POST000204188)to LT。
文摘Glucose is the primary fuel source of the brain,and therefore glucose levels need to be tightly regulated and maintained within a small physiological range.Certainly,the body necessitates a stable supply of energy mainly provided by glucose for various bodily functions.High or low blood glucose levels would impair the physiological functions of various organs of the body.