In this paper,we discuss a class of the quasillinear hyperbolic equations with the inhomogeneous terms: u_■+σ(v)+2α(t)u=0.v_■-u-0 Under the certain of hypothesis.we prove the globally existence theorems of the smo...In this paper,we discuss a class of the quasillinear hyperbolic equations with the inhomogeneous terms: u_■+σ(v)+2α(t)u=0.v_■-u-0 Under the certain of hypothesis.we prove the globally existence theorems of the smooth solutions for its Cauchy problem.展开更多
In this paper, we deal with a weakly coupled evolution P-Laplacian system with inhomogeneous terms. We obtain a critical criterion concerning existence and nonexistence of its global positive solutions. Such a criteri...In this paper, we deal with a weakly coupled evolution P-Laplacian system with inhomogeneous terms. We obtain a critical criterion concerning existence and nonexistence of its global positive solutions. Such a criterion is different from that of the weakly coupled evolution P-Laplacian system with homogeneous terms. Further, we demonstrate existence and nonexistence of its global positive solutions.展开更多
文摘In this paper,we discuss a class of the quasillinear hyperbolic equations with the inhomogeneous terms: u_■+σ(v)+2α(t)u=0.v_■-u-0 Under the certain of hypothesis.we prove the globally existence theorems of the smooth solutions for its Cauchy problem.
基金Supported by the National Natural Science Foundation of China(Nos.10971061,11271120)the Project of Hunan Natural Science Foundation of China(Nos.09JJ60013,13JJ3085)
文摘In this paper, we deal with a weakly coupled evolution P-Laplacian system with inhomogeneous terms. We obtain a critical criterion concerning existence and nonexistence of its global positive solutions. Such a criterion is different from that of the weakly coupled evolution P-Laplacian system with homogeneous terms. Further, we demonstrate existence and nonexistence of its global positive solutions.