Based on the theory of stratification, the well-posedness of the init ial and boundary value problems for the system of two-dimensional non-hydrosta ti c Boussinesq equations was discussed. The sufficient and necessa...Based on the theory of stratification, the well-posedness of the init ial and boundary value problems for the system of two-dimensional non-hydrosta ti c Boussinesq equations was discussed. The sufficient and necessary conditions of the existence and uniqueness for the solution of the equations were given for s ome representative initial and boundary value problems. Several special cases we re discussed.展开更多
A high-precision and space-time fully decoupled numerical method is developed for a class of nonlinear initial boundary value problems. It is established based on a proposed Coiflet-based approximation scheme with an ...A high-precision and space-time fully decoupled numerical method is developed for a class of nonlinear initial boundary value problems. It is established based on a proposed Coiflet-based approximation scheme with an adjustable high order for the functions over a bounded interval, which allows the expansion coefficients to be explicitly expressed by the function values at a series of single points. When the solution method is used, the nonlinear initial boundary value problems are first spatially discretized into a series of nonlinear initial value problems by combining the proposed wavelet approximation and the conventional Galerkin method, and a novel high-order step-by-step time integrating approach is then developed for the resulting nonlinear initial value problems with the same function approximation scheme based on the wavelet theory. The solution method is shown to have the N th-order accuracy, as long as the Coiflet with [0, 3 N-1]compact support is adopted, where N can be any positive even number. Typical examples in mechanics are considered to justify the accuracy and efficiency of the method.展开更多
The equation of pattern formation induced by buoyancy or by surface-tension gradient in finite systems confined between horizontal poor heat conductors is introduced by Knobloch[1990] where u is the planform function,...The equation of pattern formation induced by buoyancy or by surface-tension gradient in finite systems confined between horizontal poor heat conductors is introduced by Knobloch[1990] where u is the planform function, μ is the scaled Rayleigh number, K = 1 and α represents the effects of a heat transfer finite Blot number. The cofficients β, δ and γ do not vanish when the boundary, conditions at top and bottom are not identical (β / 0, δ / 0) or nonBoussinesq effects are taked into account (γ / 0). In this paper, the Knobloch equation with α > 0 is considered, the global existence in L2-space and the finite existence time of solution in V2-space have been obtained respectively.展开更多
With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for th...With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given.展开更多
For a nonlinear hyperbolic system of conservation laws, the initial-boundary value problem is concerned with the boundary conditions. A boundary entropy condition is derived based on Dubois F and Le Floch P's results...For a nonlinear hyperbolic system of conservation laws, the initial-boundary value problem is concerned with the boundary conditions. A boundary entropy condition is derived based on Dubois F and Le Floch P's results by taking a suitable entropy-flux pair (Journal of Differential Equations, 1988, 71(1): 93-122). The solutions of the initial-boundary value problem for the system are constructively obtained, in which initial-boundary data are in piecewise constant states. The delta-shock waves appear in their solutions.展开更多
In the present paper,the local existence of classical solutions to the periodic boundary problem and the Cauchy problem of a quasilinear evolution equation are studied under the assumptions that do not require the mon...In the present paper,the local existence of classical solutions to the periodic boundary problem and the Cauchy problem of a quasilinear evolution equation are studied under the assumptions that do not require the monotonicity of σi(s) (i= 1,…, n). The nonexistence of global solutions to the initial-boundary value problem of the equation is also discussed, a blowup theorem is proved and a concrete example is given.展开更多
In this paper, the mixed initial-boundary value problem for general first order quasi- linear hyperbolic systems with nonlinear boundary conditions in the domain D = {(t, x) | t ≥ 0, x ≥0} is considered. A suffic...In this paper, the mixed initial-boundary value problem for general first order quasi- linear hyperbolic systems with nonlinear boundary conditions in the domain D = {(t, x) | t ≥ 0, x ≥0} is considered. A sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solution is given.展开更多
In the present paper, an equation of nonlinear chromatography is derived from the physical chemistry A recursion formula of the symmetries of the equation as well as an infinite number of symmetries is found. A series...In the present paper, an equation of nonlinear chromatography is derived from the physical chemistry A recursion formula of the symmetries of the equation as well as an infinite number of symmetries is found. A series of Backlund transformations of the equation are constructed by means of the symmetries. The exact solutions of two boundary-initial value problems on the half straight line for the equation are given m terms of the solutions of the corresponding linear problems.展开更多
The author considers the global existence and global nonexistence of the initial-boundary value problem for some degenerate hyperbolic equation of the form utt- div(|△↓|^P-2 △↓u)=|u|^m u, (x,t)∈[0, +∞)...The author considers the global existence and global nonexistence of the initial-boundary value problem for some degenerate hyperbolic equation of the form utt- div(|△↓|^P-2 △↓u)=|u|^m u, (x,t)∈[0, +∞) ×Ω with p 〉 2 and m 〉 0. He deals with the global solutions by D.H.Sattinger's potential well ideas. At the same time, when the initial energy is positive, but appropriately bounded, the global nonexistence of solutions is verified by using the analysis method.展开更多
In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary condit...In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary conditions for linear and nonlinear partial differential equations. The method is applied to different forms of heat and wave equations as illustrative examples to exhibit the effectiveness of the method. The method provides the solution in a rapidly convergent series with components that can be computed iteratively. The numerical results for the illustrative examples obtained show remarkable agreement with the exact solutions. We also provide some graphical representations for clear-cut comparisons between the solutions using Maple software.展开更多
Any classical non-null solution to the initial boundary value problem of Camassa-Holm equation on finite interval with homogeneous boundary condition must blow up in finite time. An initial boundary value problem of C...Any classical non-null solution to the initial boundary value problem of Camassa-Holm equation on finite interval with homogeneous boundary condition must blow up in finite time. An initial boundary value problem of CamassaHolm equation on half axis is also investigated in this paper. When the initial potential is nonnegative,then the classical solution exists globally; if the derivative of initial data on zero point is nonpositire, then the life span of nonzero solution nmst be finite.展开更多
In this paper, the global existence of weak s olutions to the initial boundary value problem for Boltzmann-Poisson system is proved. The proof is based on the regularization and the stability of the veloci ty averages...In this paper, the global existence of weak s olutions to the initial boundary value problem for Boltzmann-Poisson system is proved. The proof is based on the regularization and the stability of the veloci ty averages and the compactness results on L 1-theory.展开更多
This paper deals with the initial boundary value problem for the Boltzmann-Poisson system, which arises in semiconductor physics, with absorbing boundary. The global existence of weak solutions is proved by using the ...This paper deals with the initial boundary value problem for the Boltzmann-Poisson system, which arises in semiconductor physics, with absorbing boundary. The global existence of weak solutions is proved by using the stability of velocity averages and the compactness results on L1-theory under weaker conditons on initial boundary values.展开更多
With prior estimate method, the existence, uniqueness, stability and large time behavior of the solution of second initial-boundary value problem for a fast diffusion equation with nonlinear boundary conditions are in...With prior estimate method, the existence, uniqueness, stability and large time behavior of the solution of second initial-boundary value problem for a fast diffusion equation with nonlinear boundary conditions are investigated. The main results are : 1) there exists only one global weak solution which continuously depends on initial value; 2) when t < T-0, the solution is infinitely continuously differentiable and is a classical solution; 3) the solution converges to zero uniformly as t is large enough.展开更多
In this paper, we study the initiial-boundary value problem of one class of nonlinear Schrodinger equations described in molecular crystals. Furthermore, the existence of the global solution is obtained by means of in...In this paper, we study the initiial-boundary value problem of one class of nonlinear Schrodinger equations described in molecular crystals. Furthermore, the existence of the global solution is obtained by means of interpolation inequality and a priori estimation.展开更多
This paper is concerned with Godunov's scheme for the initial-boundary value problem of scalar conservation laws. A kind of Godunov's scheme, which satisfies the boundary entropy condition, was given. By use of the ...This paper is concerned with Godunov's scheme for the initial-boundary value problem of scalar conservation laws. A kind of Godunov's scheme, which satisfies the boundary entropy condition, was given. By use of the scheme, numerical simulation for the weak entropy solution to the initial-boundary value problem of scalar conservation laws is conducted.展开更多
Some integral identities of smooth solution of inhomogeneous initial boundary value problem of Ginzburg-Landau equations were deduced, by which a priori estimates of the square norm on boundary of normal derivative an...Some integral identities of smooth solution of inhomogeneous initial boundary value problem of Ginzburg-Landau equations were deduced, by which a priori estimates of the square norm on boundary of normal derivative and the square norm of partial derivatives were obtained. Then the existence of global weak solution of inhomogeneous initial-boundary value problem of Ginzburg-Landau equations was proved by the method of approximation technique and a priori estimates and making limit.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
For the more general parabolic Monge-Ampère equations defined by the operator F (D2u + σ(x)), the existence and uniqueness of the admissible solution to the third initial-boundary value problem for the equa...For the more general parabolic Monge-Ampère equations defined by the operator F (D2u + σ(x)), the existence and uniqueness of the admissible solution to the third initial-boundary value problem for the equation are established. A new structure condition which is used to get a priori estimate is established.展开更多
This paper is concerned with the initial-boundary value problem of scalar conservation laws with weak discontinuous flux, whose initial data are a function with two pieces of constant and whose boundary data are a con...This paper is concerned with the initial-boundary value problem of scalar conservation laws with weak discontinuous flux, whose initial data are a function with two pieces of constant and whose boundary data are a constant function. Under the condition that the flux function has a finite number of weak discontinuous points, by using the structure of weak entropy solution of the corresponding initial value problem and the boundary entropy condition developed by Bardos-Leroux-Nedelec, we give a construction method to the global weak entropy solution for this initial-boundary value problem, and by investigating the interaction of elementary waves and the boundary, we clarify the geometric structure and the behavior of boundary for the weak entropy solution.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.40175014)
文摘Based on the theory of stratification, the well-posedness of the init ial and boundary value problems for the system of two-dimensional non-hydrosta ti c Boussinesq equations was discussed. The sufficient and necessary conditions of the existence and uniqueness for the solution of the equations were given for s ome representative initial and boundary value problems. Several special cases we re discussed.
基金Project supported by the National Natural Science Foundation of China(No.11472119)the Fundamental Research Funds for the Central Universities(No.lzujbky-2017-ot11)the 111 Project(No.B14044)
文摘A high-precision and space-time fully decoupled numerical method is developed for a class of nonlinear initial boundary value problems. It is established based on a proposed Coiflet-based approximation scheme with an adjustable high order for the functions over a bounded interval, which allows the expansion coefficients to be explicitly expressed by the function values at a series of single points. When the solution method is used, the nonlinear initial boundary value problems are first spatially discretized into a series of nonlinear initial value problems by combining the proposed wavelet approximation and the conventional Galerkin method, and a novel high-order step-by-step time integrating approach is then developed for the resulting nonlinear initial value problems with the same function approximation scheme based on the wavelet theory. The solution method is shown to have the N th-order accuracy, as long as the Coiflet with [0, 3 N-1]compact support is adopted, where N can be any positive even number. Typical examples in mechanics are considered to justify the accuracy and efficiency of the method.
基金Project supported by the National Natural Science Foundation of China!(No:19861004)
文摘The equation of pattern formation induced by buoyancy or by surface-tension gradient in finite systems confined between horizontal poor heat conductors is introduced by Knobloch[1990] where u is the planform function, μ is the scaled Rayleigh number, K = 1 and α represents the effects of a heat transfer finite Blot number. The cofficients β, δ and γ do not vanish when the boundary, conditions at top and bottom are not identical (β / 0, δ / 0) or nonBoussinesq effects are taked into account (γ / 0). In this paper, the Knobloch equation with α > 0 is considered, the global existence in L2-space and the finite existence time of solution in V2-space have been obtained respectively.
基金Natural Science Foundation of Gansu Province of China
文摘With the aid of a nonlinear transformation, a class of nonlinear convection-diffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given.
基金Project supported by the National Natural Science Foundation of China (Grant No.10671120)
文摘For a nonlinear hyperbolic system of conservation laws, the initial-boundary value problem is concerned with the boundary conditions. A boundary entropy condition is derived based on Dubois F and Le Floch P's results by taking a suitable entropy-flux pair (Journal of Differential Equations, 1988, 71(1): 93-122). The solutions of the initial-boundary value problem for the system are constructively obtained, in which initial-boundary data are in piecewise constant states. The delta-shock waves appear in their solutions.
基金Natural Science Foundation of Henan Province!(Grant No.98405070) National Natural Science Foundation of China (Grant No.19
文摘In the present paper,the local existence of classical solutions to the periodic boundary problem and the Cauchy problem of a quasilinear evolution equation are studied under the assumptions that do not require the monotonicity of σi(s) (i= 1,…, n). The nonexistence of global solutions to the initial-boundary value problem of the equation is also discussed, a blowup theorem is proved and a concrete example is given.
文摘In this paper, the mixed initial-boundary value problem for general first order quasi- linear hyperbolic systems with nonlinear boundary conditions in the domain D = {(t, x) | t ≥ 0, x ≥0} is considered. A sufficient condition to guarantee the existence and uniqueness of global weakly discontinuous solution is given.
文摘In the present paper, an equation of nonlinear chromatography is derived from the physical chemistry A recursion formula of the symmetries of the equation as well as an infinite number of symmetries is found. A series of Backlund transformations of the equation are constructed by means of the symmetries. The exact solutions of two boundary-initial value problems on the half straight line for the equation are given m terms of the solutions of the corresponding linear problems.
文摘The author considers the global existence and global nonexistence of the initial-boundary value problem for some degenerate hyperbolic equation of the form utt- div(|△↓|^P-2 △↓u)=|u|^m u, (x,t)∈[0, +∞) ×Ω with p 〉 2 and m 〉 0. He deals with the global solutions by D.H.Sattinger's potential well ideas. At the same time, when the initial energy is positive, but appropriately bounded, the global nonexistence of solutions is verified by using the analysis method.
文摘In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary conditions for linear and nonlinear partial differential equations. The method is applied to different forms of heat and wave equations as illustrative examples to exhibit the effectiveness of the method. The method provides the solution in a rapidly convergent series with components that can be computed iteratively. The numerical results for the illustrative examples obtained show remarkable agreement with the exact solutions. We also provide some graphical representations for clear-cut comparisons between the solutions using Maple software.
基金Supported by the National Natural Science Founda-tion of China (10131050)
文摘Any classical non-null solution to the initial boundary value problem of Camassa-Holm equation on finite interval with homogeneous boundary condition must blow up in finite time. An initial boundary value problem of CamassaHolm equation on half axis is also investigated in this paper. When the initial potential is nonnegative,then the classical solution exists globally; if the derivative of initial data on zero point is nonpositire, then the life span of nonzero solution nmst be finite.
文摘In this paper, the global existence of weak s olutions to the initial boundary value problem for Boltzmann-Poisson system is proved. The proof is based on the regularization and the stability of the veloci ty averages and the compactness results on L 1-theory.
基金1. The NNSF (0111051400) of Henan Province2. The OYF (0016) of Henan Province.
文摘This paper deals with the initial boundary value problem for the Boltzmann-Poisson system, which arises in semiconductor physics, with absorbing boundary. The global existence of weak solutions is proved by using the stability of velocity averages and the compactness results on L1-theory under weaker conditons on initial boundary values.
文摘With prior estimate method, the existence, uniqueness, stability and large time behavior of the solution of second initial-boundary value problem for a fast diffusion equation with nonlinear boundary conditions are investigated. The main results are : 1) there exists only one global weak solution which continuously depends on initial value; 2) when t < T-0, the solution is infinitely continuously differentiable and is a classical solution; 3) the solution converges to zero uniformly as t is large enough.
基金Project supported by the National Natural Science Foundation of China (Nos.10576013,10471050)the Natural Science Foundation of Guangdong Province of China (No.5300889)
文摘In this paper, we study the initiial-boundary value problem of one class of nonlinear Schrodinger equations described in molecular crystals. Furthermore, the existence of the global solution is obtained by means of interpolation inequality and a priori estimation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10671120)
文摘This paper is concerned with Godunov's scheme for the initial-boundary value problem of scalar conservation laws. A kind of Godunov's scheme, which satisfies the boundary entropy condition, was given. By use of the scheme, numerical simulation for the weak entropy solution to the initial-boundary value problem of scalar conservation laws is conducted.
文摘Some integral identities of smooth solution of inhomogeneous initial boundary value problem of Ginzburg-Landau equations were deduced, by which a priori estimates of the square norm on boundary of normal derivative and the square norm of partial derivatives were obtained. Then the existence of global weak solution of inhomogeneous initial-boundary value problem of Ginzburg-Landau equations was proved by the method of approximation technique and a priori estimates and making limit.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
基金The NSF (10401009) of ChinaNCET (060275) of China
文摘For the more general parabolic Monge-Ampère equations defined by the operator F (D2u + σ(x)), the existence and uniqueness of the admissible solution to the third initial-boundary value problem for the equation are established. A new structure condition which is used to get a priori estimate is established.
文摘This paper is concerned with the initial-boundary value problem of scalar conservation laws with weak discontinuous flux, whose initial data are a function with two pieces of constant and whose boundary data are a constant function. Under the condition that the flux function has a finite number of weak discontinuous points, by using the structure of weak entropy solution of the corresponding initial value problem and the boundary entropy condition developed by Bardos-Leroux-Nedelec, we give a construction method to the global weak entropy solution for this initial-boundary value problem, and by investigating the interaction of elementary waves and the boundary, we clarify the geometric structure and the behavior of boundary for the weak entropy solution.