期刊文献+
共找到391篇文章
< 1 2 20 >
每页显示 20 50 100
Mg-doped,carbon-coated,and prelithiated SiO_(x) as anode materials with improved initial Coulombic efficiency for lithium-ion batteries
1
作者 Bin Liu Jie Liu +1 位作者 Cheng Zhong Wenbin Hu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期204-214,共11页
Silicon suboxide(SiO_(x),x≈1)is promising in serving as an anode material for lithium-ion batteries with high capacity,but it has a low initial Coulombic efficiency(ICE)due to the irreversible formation of lithium si... Silicon suboxide(SiO_(x),x≈1)is promising in serving as an anode material for lithium-ion batteries with high capacity,but it has a low initial Coulombic efficiency(ICE)due to the irreversible formation of lithium silicates during the first cycle.In this work,we modify SiO_(x) by solid-phase Mg doping reaction using low-cost Mg powder as a reducing agent.We show that Mg reduces SiO_(2) in SiO_(x) to Si and forms MgSiO_(3) or Mg_(2)SiO_(4).The MgSiO_(3) or Mg_(2)SiO_(4) are mainly distributed on the surface of SiO_(x),which suppresses the irreversible lithium-ion loss and enhances the ICE of SiO_(x).However,the formation of MgSiO_(3) or Mg_(2)SiO_(4) also sacrifices the capacity of SiO_(x).Therefore,by controlling the reaction process between Mg and SiO_(x),we can tune the phase composition,proportion,and morphology of the Mg-doped SiO_(x) and manipulate the performance.We obtain samples with a capacity of 1226 mAh g^(–1) and an ICE of 84.12%,which show significant improvement over carbon-coated SiO_(x) without Mg doping.By the synergistical modification of both Mg doping and prelithiation,the capacity of SiO_(x) is further increased to 1477 mAh g^(–1) with a minimal compromise in the ICE(83.77%). 展开更多
关键词 initial Coulombic efficiency lithium-ion batteries magnesium doping prelithiation silicon suboxide
下载PDF
Engineering Mesoporous Structure in Amorphous Carbon Boosts Potassium Storage with High Initial Coulombic Efficiency 被引量:5
2
作者 Ruiting Guo Xiong Liu +6 位作者 Bo Wen Fang Liu Jiashen Meng Peijie Wu Jinsong Wu Qi Li Liqiang Mai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期39-50,共12页
Amorphous carbon shows great potential as an anode material for high-performance potassium-ion batteries;however,its abundant defects or micropores generally capture K ions,thus resulting in high irreversible capacity... Amorphous carbon shows great potential as an anode material for high-performance potassium-ion batteries;however,its abundant defects or micropores generally capture K ions,thus resulting in high irreversible capacity with low initial Coulombic efficiency(ICE)and limited practical application.Herein,pore engineering via a facile self-etching strategy is applied to achieve mesoporous carbon(meso-C)nanowires with interconnected framework.Abundant and evenly distributed mesopores could provide short K^+ pathways for its rapid diffusion.Compared to microporous carbon with highly disordered structure,the meso-C with Zn-catalyzed short-range ordered structure enables more K^+to reversibly intercalate into the graphitic layers.Consequently,the mesoC shows an increased capacity by ~100 mAh g^-1 at 0.1 A g^-1,and the capacity retention is 70.7% after 1000 cycles at 1 A g^-1.Multiple in/ex situ characterizations reveal the reversible structural changes during the charging/discharging process.Particularly,benefiting from the mesoporous structure with reduced specific surface area by 31.5 times and less defects,the meso-C generates less irreversible capacity with high ICE up to 76.7%,one of the best reported values so far.This work provides a new perspective that mesopores engineering can effectively accelerate K^+ diffusion and enhance K^+ adsorption/intercalation storage. 展开更多
关键词 Potassium-ion battery Mesopores engineering Storage mechanism initial Coulombic efficiency
下载PDF
Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries 被引量:3
3
作者 Yanhua Wan Yao Liu +2 位作者 Dongliang Chao Wei Li Dongyuan Zhao 《Nano Materials Science》 EI CAS CSCD 2023年第2期189-201,共13页
Initial Coulombic efficiency(ICE)has been widely adopted in battery research as a quantifiable indicator for the lifespan,energy density and rate performance of batteries.Hard carbon materials have been accepted as a ... Initial Coulombic efficiency(ICE)has been widely adopted in battery research as a quantifiable indicator for the lifespan,energy density and rate performance of batteries.Hard carbon materials have been accepted as a promising anode family for sodium-ion batteries(SIBs)owing to their outstanding performance.However,the booming application of hard carbon anodes has been significantly slowed by the low ICE,leading to a reduced energy density at the cell level.This offers a challenge to develop high ICE hard carbon anodes to meet the applications of high-performance SIBs.Here,we discuss the definition and factors of ICE and describe several typical strategies to improve the ICE of hard carbon anodes.The strategies for boosting the ICE of such anodes are also systematically categorized into several aspects including structure design,surface engineering,electrolyte optimization and pre-sodiation.The key challenges and perspectives in the development of high ICE hard carbon anodes are also outlined. 展开更多
关键词 Sodium-ion battery Hard carbon initial Coulombic efficiency Interface engineering ANODE
下载PDF
Natural Stibnite for Lithium‑/Sodium‑Ion Batteries:Carbon Dots Evoked High Initial Coulombic Efficiency 被引量:4
4
作者 Yinger Xiang Laiqiang Xu +7 位作者 Li Yang Yu Ye Zhaofei Ge Jiae Wu Wentao Deng Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期208-228,共21页
The application of Sb_(2)S_(3)with marvelous theoretical capacity for alkali metal-ion batteries is seriously limited by its poor electrical conductivity and low initial coulombic efficiency(ICE).In this work,natural ... The application of Sb_(2)S_(3)with marvelous theoretical capacity for alkali metal-ion batteries is seriously limited by its poor electrical conductivity and low initial coulombic efficiency(ICE).In this work,natural stibnite modified by carbon dots(Sb_(2)S_(3)@xCDs)is elaborately designed with high ICE.Greatly,chemical processes of local oxidation–partial reduction–deep coupling for stibnite reduction of CDs are clearly demonstrated,confirmed with in situ high-temperature X-ray diffraction.More impressively,the ICE for lithium-ion batteries(LIBs)is enhanced to 85%,through the effect of oxygen-rich carbon matrix on C–S bonds which inhibit the conversion of sulfur to sulfite,well supported by X-ray photoelectron spectroscopy characterization of solid electrolyte interphase layers helped with density functional theory calculations.Not than less,it is found that Sb–O–C bonds existed in the interface effectively promote the electronic conductivity and expedite ion transmission by reducing the bandgap and restraining the slip of the dislocation.As a result,the optimal sample delivers a tremendous reversible capacity of 660 mAh g^(−1)in LIBs at a high current rate of 5 A g^(−1).This work provides a new methodology for enhancing the electrochemical energy storage performance of metal sulfides,especially for improving the ICE. 展开更多
关键词 Carbon dots Sb_(2)S_(3) initial Coulombic efficiency Interfacial bond ANODE
下载PDF
An almost full reversible lithium-rich cathode: Revealing the mechanism of high initial coulombic efficiency 被引量:1
5
作者 Dong Luo Jianming Fan +9 位作者 Zhuo Yao Huixian Xie Jiaxiang Cui Yajun Yang Xiaokai Ding Jiapeng Ji Shuxing Wu Ming Ling Chenyu Liu Zhan Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期120-126,I0003,共8页
Low initial Coulombic efficiency (ICE) is an important impediment to practical application of Li-rich layered oxides (LLOs), which is due to the irreversible oxygen release. It is generally considered that surface oxy... Low initial Coulombic efficiency (ICE) is an important impediment to practical application of Li-rich layered oxides (LLOs), which is due to the irreversible oxygen release. It is generally considered that surface oxygen vacancies are conducive to the improvement of ICE of LLOs. To reveal the relation of oxygen vacancies and ICE, sample PLO (Li-Mn-Cr-O) and its treated product (TLO) are comprehensive investigated in this work. During the treated process, part of oxygen atoms return to original constructed vacancies. It makes oxygen vacancies in sample TLO much poorer than those in sample PLO, and induces the formation of Li-poor spinel-layered integrated structure. Electrochemical measurement indicates the ICE of sample PLO is only 80.8%, while sample TLO is almost full reversible with the ICE of ~97.1%. In term of high-energy X-ray diffraction, scanning transmission electron microscopy, X-ray photoelectron spectroscopy and synchrotron hard/soft X-ray absorption spectroscopy, we discover that the ICE is difficult to be improved significantly just by building oxygen vacancies. LLOs with high ICE not only have to construct suitable oxygen vacancies, but also require other components with Li-poor structure to stabilize oxygen. This work provides deep insight into the mechanism of high ICE, and will contribute to the design and development of LLOs for next-generation high-energy lithium-ion batteries. 展开更多
关键词 Li-ion batteries Li-rich layered oxides initial coulombic efficiency Oxygen vacancies
下载PDF
Boosting high initial coulombic efficiency of hard carbon by in-situ electrochemical presodiation 被引量:1
6
作者 Nannan Qin Yanyan Sun +5 位作者 Chao Hu Sainan Liu Zhigao Luo Xinxin Cao Shuquan Liang Guozhao Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期310-316,I0008,共8页
Hard carbon(HC)is a promising anode material for sodium ion batteries(SIBs),whereas inferior initial coulombic efficiency(ICE)severely limits its practical application.In the present work,we propose an in situ electro... Hard carbon(HC)is a promising anode material for sodium ion batteries(SIBs),whereas inferior initial coulombic efficiency(ICE)severely limits its practical application.In the present work,we propose an in situ electrochemical presodiation approach to improve ICE by mixing sodium biphenyl(Na-Bp)dimethoxyethane(DME)solution with DME-based ether electrolyte.A solid electrolyte interface(SEI)could be formed beforehand on the HC electrode and Na^(+)was absorbed to nanopores and graphene stacks,compensating for the sodium loss and preventing electrolyte decomposition during the initial charge and discharge cycle.By this way,the ICE of half-cells was increased to nearly 100%and that of full-cells from 45%to 96%with energy density from 132.9 to 230.5 W h kg^(-1).Our work provides an efficient and facile method for improving ICE,which can potentially promote the practical application of HCbased materials. 展开更多
关键词 Hard carbon In situ presodiation initial coulombic efficiency Solid electrolyte interface Sodium-ion batteries
下载PDF
Sn Alloy and Graphite Addition to Enhance Initial Coulombic Efficiency and Cycling Stability of SiO Anodes for Li-Ion Batteries 被引量:1
7
作者 Xingyang Du Hanying Zhang +2 位作者 Xuexia Lan Bin Yuan Renzong Hu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期353-359,共7页
Silicon monoxide(SiO)has aroused increased attention as one of the most promising anodes for high-energy density Li-ion batteries.To enhance the initial Coulombic efficiencies(ICE)and cycle stability of SiO-based anod... Silicon monoxide(SiO)has aroused increased attention as one of the most promising anodes for high-energy density Li-ion batteries.To enhance the initial Coulombic efficiencies(ICE)and cycle stability of SiO-based anodes,a new facile composition and electrode design strategy have been adapted to fabricate a SiO-Sn-Co/graphite(G)anode.It achieves a unique structure where tiny milled SiO-Sn-Co particles are dispersed among two graphite layers.In this hybrid electrode,Sn-Co alloys promoted Li;extraction kinetics,and the holistic reversibility of SiO and graphite enhanced the electrical conductivity.The SiO-Sn-Co/G electrode delivered an average ICE of 77.6%and a reversible capacity of 640 mAh g^(-1)at 800 mA g^(-1),and the capacity retention was above 98%after 100 cycles,which was much higher than that of the SiO with an ICE of 55.3%and a capacity retention of 50%.These results indicated that this was reliable method to improve the reversibility and cycle ability of the SiO anode.Furthermore,based on its easy and feasible fabrication process,it may provide a suitable choice to combine other alloy anodes with the graphite anode. 展开更多
关键词 ball milling cycle performance initial Coulombic efficiency silicon monoxide tin-cobalt alloy
下载PDF
Relationship between initial efficiency and structure parameters of carbon anode material for Li-ion battery 被引量:1
8
作者 申建斌 唐有根 +1 位作者 梁逸曾 谭欣欣 《Journal of Central South University of Technology》 EI 2008年第4期484-487,共4页
The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was inve... The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was investigated by an artificial intelligence approach called Random Forests using D10,D50,D90,BET specific surface area and TP density as inputs,initial efficiency as output.The results give good classification performance with 91%accuracy.The variable importance analysis results show the impact of 5 variables on the initial efficiency descends in the order of D90,TP density,BET specific surface area,D50 and D10;smaller D90 and larger TP density have positive impact on initial efficiency.The contribution of BET specific surface area on classification is only 18.74%,which indicates the shortcoming of BET specific surface area as a widely used parameter for initial efficiency evaluation. 展开更多
关键词 Li-ion battery carbon anode material initial efficiency structure parameters
下载PDF
V-doped Co-free Li-rich layered oxide with enhanced oxygen redox reversibility for excellent voltage stability and high initial Coulombic efficiency
9
作者 Liping Tan Wenzhao Huang +5 位作者 Xiaoyan Xie Xiaola Li Ziyang Liang Zhan Lin Chenyu Liu Dong Luo 《Energy Materials and Devices》 2024年第3期97-108,共12页
Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is imp... Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is impeded by their low initial Coulombic efficiency and rapid voltage decay.Herein,a V-doped layered-spinel coherent layer is constructed on the surface of a Co-free LRMO through a simple treatment with NH_(4)VO_(3).The layered-spinel coherent layer with 3D ion channels enhanced Li+diffusion efficiency,mitigates surface-inter-face reactions and suppresses irreversible oxygen release.Notably,V-doping significantly reduces the Bader charge of oxygen atoms,thereby impeding excessive oxidation of oxygen ions and further enhancing the stability of O-redox.The modified LRMO exhibites a remarkable initial Coulombic efficiency of 91.6%,signifi-cantly surpassing that of the original LRMO(74.4%).Furthermore,the treated sample showes an impressive capacity retention rate of 91.9%after 200 cycles,accompanied by a voltage decay of merely 0.47 mV per cycle.The proposed treatment approach is straightforward and significantly improves the initial Coulombic efficiency,voltage stability,and capacity stability of LRMO cathode materials,thus holding considerable promise for the development of high-energy Li-ion batteries. 展开更多
关键词 Co-free Li-rich layered oxide V-doped layered-spinel coherent layer voltage stability high initial Coulombic efficiency
下载PDF
Axial response and material efficiency of tapered helical piles 被引量:4
10
作者 Hamid Mortazavi Bak Amir M.Halabian +1 位作者 Hamid Hashemolhosseini Mohammadali Rowshanzamir 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期176-187,共12页
Different techniques have been proposed to increase the bearing capacity of open-ended piles.Welding helices to the shaft and tapering the pile shaft could be used simultaneously to enhance the static and dynamic beha... Different techniques have been proposed to increase the bearing capacity of open-ended piles.Welding helices to the shaft and tapering the pile shaft could be used simultaneously to enhance the static and dynamic behaviors of these piles.This paper subjects the bearing capacity,stiffness,frictional behavior,and material efficiency of the tapered helical piles to scrutiny.Tapered helical piles are introduced herein as an alternative option to improve the material efficiency of hollow piles.Based on the Taguchi method,a series of experiments was designed and conducted.The axial responses of tapered helical piles are also investigated using finite element analyses.The results derived from loadedisplacement curves and strain gages are used to characterize the axial compression responses of tapered helical piles.The effects of tapered angle,helices diameter and helices distance are examined using dimensionless parameters,and the degree of contribution of these factors is calculated on each of the enumerated variables individually.Experimental results show that the shaft friction resistance of tapered helical piles increases continuously with the pile head settlement.Furthermore,the effect of tapered wall on the shaft friction resistance is more tangible at low stress levels.The results showed that the relative material efficiency factor of the optimum pile could be 2.5 times that of unoptimized pile with a similar quantity of material. 展开更多
关键词 Tapered helical pile Axial response Bearing capacity Shaft resistance initial tangent stiffness Relative material efficiency Taguchi method
下载PDF
High Initial Reversible Capacity and Long Life of Ternary SnO_(2)-Co-carbon Nanocomposite Anodes for Lithium-Ion Batteries 被引量:3
11
作者 Pan Deng Jing Yang +7 位作者 Shengyang Li Tian-E Fan Hong-Hui Wu Yun Mou Hui Huang Qiaobao Zhang Dong-Liang Peng Baihua Qu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期326-338,共13页
The two major limitations in the application of SnO_2 for lithium?ion battery(LIB) anodes are the large volume variations of SnO_2 during repeated lithiation/delithiation processes and a large irreversible capacity lo... The two major limitations in the application of SnO_2 for lithium?ion battery(LIB) anodes are the large volume variations of SnO_2 during repeated lithiation/delithiation processes and a large irreversible capacity loss during the first cycle, which can lead to a rapid capacity fade and unsatisfactory initial Coulombic e ciency(ICE). To overcome these limitations, we developed composites of ultrafine SnO_2 nanoparticles and in situ formed Co(CoSn) nanocrystals embedded in an N?doped carbon matrix using a Co?based metal–organic framework(ZIF?67). The formed Co additives and structural advantages of the carbon?confined SnO_2/Co nanocomposite e ectively inhibited Sn coarsening in the lithiated SnO_2 and mitigated its structural degradation while facilitating fast electronic transport and facile ionic di usion. As a result, the electrodes demonstrated high ICE (82.2%), outstanding rate capability(~ 800 mAh g^(-1) at a high current density of 5 A g^(-1)), and long?term cycling stability(~ 760 mAh g^(-1) after 400 cycles at a current density of 0.5 A g^(-1)). This study will be helpful in developing high?performance Si(Sn)?based oxide, Sn/Sb?based sulfide, or selenide electrodes for LIBs. In addition, some metal organic frameworks similar to ZIF?67 can also be used as composite templates. 展开更多
关键词 Ultrafine SnO_(2) nanostructures ZIF-67 frameworks Enhanced initial Coulombic efficiency Reversible conversion reaction
下载PDF
The Initial Mesoscale Vortexes Leading to the Formation of Tropical Cyclones in the Western North Pacific
12
作者 Shenglan WU Juan FANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第5期804-823,共20页
A statistical analysis of the initial vortexes leading to tropical cyclone(TC)formation in the western North Pacific(WNP)is conducted with the ECMWF ERA5 reanalysis data from 1999 to 2018.It is found that TCs in the W... A statistical analysis of the initial vortexes leading to tropical cyclone(TC)formation in the western North Pacific(WNP)is conducted with the ECMWF ERA5 reanalysis data from 1999 to 2018.It is found that TCs in the WNP basically originate from three kinds of vortexes,i.e.,a mid-level vortex(MV),a low-level vortex(LV),and a relatively deep vortex with notable vorticity in both the lower and middle troposphere(DV).Among them,LV and DV account for 47.9%and 24.2%of tropical cyclogenesis events,respectively,while only 27.9%of TCs develop from the MV,which is much lower than that which occurs in the North Atlantic and eastern Pacific.Such a difference might be ascribed to the active monsoon systems in the WNP all year round.Due to the nearly upright structure of mid-level convergence in the early pre-genesis stage,TC genesis efficiency is the highest in DV.Compared with MV,LV generally takes a shorter time to intensify to a TC because of the higher humidity and the stronger low-level cyclonic circulation,which is related to air-sea interaction and boundary-layer convergence.Further examination of the relationship between tropical cyclogenesis and large-scale flow patterns indicate that the TC genesis events associated with LV are primarily related to the monsoon shear line,monsoon confluence region,and monsoon gyre,while those associated with MV are frequently connected with easterly waves and wave energy dispersion of preexisting TC.Compared with other flow patterns,tropical cyclones usually form and intensify faster in the monsoon confluence region. 展开更多
关键词 TC formation initial mesoscale vortexes TC genesis efficiency large-scale flow patterns
下载PDF
Low-temperature-pyrolysis preparation of nanostructured graphite towards rapid potassium storage with high initial Coulombic efficiency
13
作者 Jingke Ren Boyu Xing +7 位作者 Wen Luo Binyang Luo Xinfei Wu Xin Yan Wencong Feng Feiyue Wang Chaojie Cheng Liqiang Mai 《Nano Research》 SCIE EI CSCD 2024年第6期5138-5147,共10页
Industrially prepared artificial graphite(AG)is attractive for potassium-ion batteries(PIBs),but its rate performance is poor and the production process is energy intensive,so developing an efficient strategy to produ... Industrially prepared artificial graphite(AG)is attractive for potassium-ion batteries(PIBs),but its rate performance is poor and the production process is energy intensive,so developing an efficient strategy to produce novel graphite with low energy consumption and high performance is economically important.Herein,a nanostructured graphite composed of multi-walled carbon nanotubes(MWCNTs)and graphite shells was prepared by one-pot method through low-temperature pyrolysis of iron-based metal-organic framework(MOF)and carbon source.The high graphitization degree of nanostructured graphite makes the initial Coulombic efficiency(ICE)exceed 80%,and the three-dimensional(3D)conductive network ensures a specific capacity of 234 mAh·g^(−1)after 1000 cycles at a high current density of 500 mA·g^(−1).In addition,the typical graphite potassium storage mechanism is also demonstrated by in situ X-ray diffraction(XRD)and in situ Raman spectroscopy,and its practicality is also proved by the voltage of the full cells.This work provides a feasible way to optimize the practical production process of AG and expand its application in energy storage. 展开更多
关键词 graphite anode potassium-ion batteries high graphitization degree low-temperature pyrolysis initial Coulombic efficiency
原文传递
Molten-LiCl induced thermochemical prelithiation of SiOx:Regulating the active Si/O ratio for high initial Coulombic efficiency 被引量:4
14
作者 Yang Li Yong Qian +2 位作者 Jie Zhou Ning Lin Yitai Qian 《Nano Research》 SCIE EI CSCD 2022年第1期230-237,共8页
The low initial Coulombic efficiency(ICE)of SiOx anode caused by the irreversible generation of LiySiOz and Li20 during lithiation process limits its application for high energy-density lithium-ion batteries.Herein,we... The low initial Coulombic efficiency(ICE)of SiOx anode caused by the irreversible generation of LiySiOz and Li20 during lithiation process limits its application for high energy-density lithium-ion batteries.Herein,we report a molten-salt-induced thermochemical.prelithiation strategy for regulating the electrochemically active Si/O ratio of SiOx and thus enhancing ICE through thermal treatment of pre-synthesized LiNH2-coated SiOx in molten LiCl at 700℃.Bulk SiOx micro-particle was transformed into pomegranatelike prelithiated micro-cluster composite(M-Li-SiOx)with SiOx core and outer nano-sized agglomerates consisting of Li2Si20s,SiO2,and Si.Through the analysis of the reaction intermediates,molten-UC!could initiate reactions and promote mass transfer by the continuous extraction of oxygen component from SiOx particle inner in the form of inert Li2Si20s and SiO2 nanotubes to realize the.prelithiation.The degree of prelithiation can be regulated by adjusting the coating amount of LiNH2 layer,and the resulted M-Li-SiOx displays a prominent improvement of ICE from 58.73%to 88.2%.The graphite/M-Li-SiOx(8:2)composite electrode delivers a.discharge capacity of 497.29 mAh·g^(-1) with an ICE of 91.79%.By pairing graphite/M-Li-SiOx anode and LiFeP04 cathode in a full-cell an enhancement of energy density of 37.25%is realized compared with the full-cell containing graphite/SiOx anode.Furthermore,,ex-situ X-ray photoelectron spectroscopy(XPS)/Raman/X-ray diffraction(XRD)and related electrochemical measurements reveal the SiOx core and Si of M-Li-SiOx participate in the lithiation,and pre-generated Li2Si20s with u+diffusivity and pomegranate-like.structure reduces the reaction resistance and interface impedance of the solid electrolyte interphase(SEI)film. 展开更多
关键词 initial Coulombic efficiency thermochemical prelithiation liquid coating MOLTEN-SALT mass transfer
原文传递
Fabricating multi-porous carbon anode with remarkable initial coulombic efficiency and enhanced rate capability for sodium-ion batteries 被引量:4
15
作者 Yong Tong Yuanji Wu +3 位作者 Zihao Liu Yongshi Yin Yingjuan Sun Hongyan Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期127-132,共6页
Due to the abundant sodium reserves and high safety,sodium ion batteries(SIBs)are foreseen a promising future.While,hard carbon materials are very suitable for the anode of SIBs owing to their structure and cost advan... Due to the abundant sodium reserves and high safety,sodium ion batteries(SIBs)are foreseen a promising future.While,hard carbon materials are very suitable for the anode of SIBs owing to their structure and cost advantages.However,the unsatisfactory initial coulombic efficiency(ICE)is one of the crucial blemishes of hard carbon materials and the slow sodium storage kinetics also hinders their wide application.Herein,with spherical nano SiO_(2)as pore-forming agent,gelatin and polytetrafluoroethylene as carbon sources,a multi-porous carbon(MPC)material can be easily obtained via a co-pyrolysis method,by which carbonization and template removal can be achieved synchronously without the assistance of strong acids or strong bases.As a result,the MPC anode exhibited remarkable ICE of 83%and a high rate capability(208 m Ah/g at 5 A/g)when used in sodium-ion half cells.Additionally,coupling with Na3V2(PO4)3as the cathode to assemble full cells,the as-fabricated MPC//NVP full cell delivered a good rate capability(146 m Ah/g at 5 A/g)as well,implying a good application prospect the MPC anode has. 展开更多
关键词 Multi-porous carbon initial coulombic efficiency Rate capability Sodium ion batteries Silica template
原文传递
Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na‑Ion Batteries:Origins,Solutions,and Perspectives 被引量:5
16
作者 Zheng Tang Siyu Zhou +6 位作者 Yuancheng Huang Hong Wang Rui Zhang Qi Wang Dan Sun Yougen Tang Haiyan Wang 《Electrochemical Energy Reviews》 SCIE EI CSCD 2023年第1期651-679,共29页
Carbonaceous materials for lithium(Li)/sodium(Na)-ion batteries have attracted significant attention because of their widespread availability,renewable nature,and low cost.During the past decades,although great effort... Carbonaceous materials for lithium(Li)/sodium(Na)-ion batteries have attracted significant attention because of their widespread availability,renewable nature,and low cost.During the past decades,although great efforts have been devoted to developing high-performance carbonaceous materials with high capacity,long life span,and excellent rate capability,the low initial Coulombic efficiency(ICE)of high-capacity carbonaceous materials seriously limits their practical applications.Various methods have been successfully exploited,and a revolutionary impact has been achieved through the utilization of different techniques.Different carbonaceous materials possess different ion storage mechanisms,which means that the initial capacity loss may vary.However,there has rarely been a special review about the origins of and progress in the ICE for carbonaceous materials from the angle of the crystal structure.Hence,in this review,the structural differences between and ion storage mechanisms of various carbonaceous materials are first introduced.Then,we deduce the correlative factors of low ICE and thereafter summarize the proposed strategies to address these issues.Finally,some challenges,perspectives,and future directions on the ICE of carbonaceous materials are given.This review will provide deep insights into the challenges of improving the ICE of carbonaceous anodes for high-energy Li/Na-ion batteries,which will greatly contribute to their commercialization process. 展开更多
关键词 Lithium/sodium-ion batteries initial Coulombic efficiency Carbonaceous materials Energy storage
原文传递
Methods of improving the initial Coulombic efficiency and rate performance of both anode and cathode materials for sodium-ion batteries 被引量:3
17
作者 Nkongolo Tshamala Aristote Kangyu Zou +6 位作者 Andi Di Wentao Deng Baowei Wang Xinglan Deng Hongshuai Hou Guoqiang Zou Xiaobo Ji 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第2期730-742,共13页
Sodium-ion batteries(SIBs) have gained more scientists’ interest, owing to some facts such as the natural abundance of Na, the similarities of physicochemical characteristics between Li and Na. The irreversible Na+io... Sodium-ion batteries(SIBs) have gained more scientists’ interest, owing to some facts such as the natural abundance of Na, the similarities of physicochemical characteristics between Li and Na. The irreversible Na+ions consumption during the first cycle of charge/discharge process(due to the formation of the solid electrolyte interface(SEI) on the electrode surface and other irreversible reactions) is the factor that determines high performance SIBs and largely reduces the capacity of the full cell SIBs. Thus, the initial coulombic efficiency(ICE) of SIBs for both anode and cathode materials, is a key parameter for high performance SIBs, and the point is to increase the transport rate of the Na+ions. Therefore, developing SIBs with high ICE and rate performance becomes vital to boost the commercialization of SIBs. Here we provide a review on the methods to improve the ICE and the rate performance, by summarizing some methods of improving the ICE and rate performance of the anode and cathode materials for SIBs, and end by a conclusion with some perspectives and recommendations. 展开更多
关键词 initial coulombic efficiency Rate performance Sodium-ion batteries Anode materials Cathode materials
原文传递
Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery 被引量:2
18
作者 Cheng-Xin Yu Yu Li +3 位作者 Zhao-Hua Wang Xin-Ran Wang Ying Bai Chuan Wu 《Rare Metals》 SCIE EI CAS CSCD 2022年第5期1616-1625,共10页
Hard carbon(HC) is considered as a commercial candidate for anode materials of sodium-ion batteries due to its low cost and excellent capacity. However, the problem of low initial Coulombic efficiency is still urgentl... Hard carbon(HC) is considered as a commercial candidate for anode materials of sodium-ion batteries due to its low cost and excellent capacity. However, the problem of low initial Coulombic efficiency is still urgently needed to be solved to promote the industrialization of HC.In this paper, 2,2-dimethylvinyl boric acid(DEBA) is used to modify the surface of HC to prepare HC-DEBA materials. During the cycling, the C = C bonds of DEBA molecules will be in situ electro-polymerized to form a polymer network, which can act as the passive protecting layer to inhibit irreversible decomposition of electrolyte,and induce a thinner solid electrolyte interface with lower interface impedance. Therefore, HC-DEBA has higher initial Coulombic efficiency and better cycling stability. In ester-based electrolyte, the initial Coulombic efficiency of the optimized HC-DEBA-3% increases from 65.2% to77.2%. After 2000 cycles at 1 A·g^(-1), the capacity retention rate is 90.92%. Moreover, it can provide a high reversible capacity of 294.7 m Ah·g^(-1) at 50 mA·g^(-1). This simple surface modification method is ingenious and versatile,which can be extended to other energy storage materials. 展开更多
关键词 Sodium-ion battery Hard carbon initial Coulombic efficiency Solid electrolyte interface Surface modification Ester electrolyte
原文传递
庆城页岩油泵入式光纤监测技术实践 被引量:1
19
作者 马兵 徐创朝 +2 位作者 陈强 李晓燕 张同伍 《石油机械》 北大核心 2024年第1期118-123,共6页
庆城油田页岩油水平井主体采用分段多簇细分切割体积压裂技术,但目前仍存在多簇起裂效率不清晰的问题。为了评价多簇起裂有效性及裂缝延伸规律,开展了水平井泵入式光纤测试技术先导性试验,该技术具有工艺灵活、便捷高效及成本低的独特... 庆城油田页岩油水平井主体采用分段多簇细分切割体积压裂技术,但目前仍存在多簇起裂效率不清晰的问题。为了评价多簇起裂有效性及裂缝延伸规律,开展了水平井泵入式光纤测试技术先导性试验,该技术具有工艺灵活、便捷高效及成本低的独特优势。测试结果表明,水平井分段多簇细分切割体积压裂通过射孔限流+颗粒暂堵方式,能够实现100%多簇完全起裂,但各簇进砂(液)量差异明显,各簇裂缝延伸不均衡。该项研究初步回答了多簇起裂有效性问题,并验证了水平井套管内泵入式光纤监测技术的可行性,丰富了水平井体积压裂效果评估测试手段,同时为鄂尔多斯盆地页岩油水平井压裂工艺及参数优化提供了重要依据。 展开更多
关键词 页岩油 水平井 体积压裂 起裂效率 光纤监测 压裂工艺 庆城油田
下载PDF
间隔装药的殉爆起爆技术在露天矿山爆破中的应用 被引量:1
20
作者 朱长江 王永星 《露天采矿技术》 CAS 2024年第2期42-45,共4页
为了降低西沟露天石料厂的采石爆破成本,提高经济效益;应用空气袋间隔装药装置技术进行了150 mm炮孔和100 mm炮孔的爆破实验对比,同时进行了露天炮孔孔内反向和正向起爆殉爆试验对比。结果表明:采用炮孔中部空气袋间隔装置的露天矿台阶... 为了降低西沟露天石料厂的采石爆破成本,提高经济效益;应用空气袋间隔装药装置技术进行了150 mm炮孔和100 mm炮孔的爆破实验对比,同时进行了露天炮孔孔内反向和正向起爆殉爆试验对比。结果表明:采用炮孔中部空气袋间隔装置的露天矿台阶爆破,电子雷管起爆一端装药之后再利用其爆轰波殉爆起爆另一端装药,孔径大的炮孔比孔径小的炮孔殉爆起爆的爆破效果好;采用殉爆起爆技术后,做到了节能减排和提效;反向起爆爆破法与正向起爆爆破法相比,爆破效果更好。 展开更多
关键词 殉爆起爆 空气袋间隔装置 底部(上部)装药 爆破法 节能减排提效
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部