The mechanism of the shift of the band-gap in phononic crystal (PC) with different initial confining pressures is studied experimentally and numerically. The experimental results and numerical analysis simultaneousl...The mechanism of the shift of the band-gap in phononic crystal (PC) with different initial confining pressures is studied experimentally and numerically. The experimental results and numerical analysis simultaneously indicate that the confining pressure can efficiently tune the location in and the width of the band-gap. The present work provides a basis for tuning the band-gap of phononic crystal in engineering applications.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.10732010,10972010,and 11028206)
文摘The mechanism of the shift of the band-gap in phononic crystal (PC) with different initial confining pressures is studied experimentally and numerically. The experimental results and numerical analysis simultaneously indicate that the confining pressure can efficiently tune the location in and the width of the band-gap. The present work provides a basis for tuning the band-gap of phononic crystal in engineering applications.