This paper deals with the mechanism of the formation of initial cracks in the yttria partially stabilized zirconia thermal barrier coatings prepared by EB-PVD method.The microcracks were only recognized inside the cer...This paper deals with the mechanism of the formation of initial cracks in the yttria partially stabilized zirconia thermal barrier coatings prepared by EB-PVD method.The microcracks were only recognized inside the ceramic top coat of the thermalcycled TBCs. SEM/EDS observations indicated that some special oxides exist in the area just below the cracks.It seems that the formation of the initial cracks can result from the oxidation stress as well as the thermal stress.展开更多
The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods ...The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods have been developed for the estimation of this critical design parameter,such methods are destructive and often requires subjective interpretations of the stress–strain curves,particularly in rocks with pre-existing microcracks or high porosity.This study explore the applicability of non-destructive ultrasonic through-transmission methods for determining rock damage levels by assessing the changes in transmitted signal characteristics during loading.The change in velocity,amplitude,dominant frequency,and root-mean-square voltage are investigated with four different rock types including marble,sandstone,granite,and basalt under various stress levels.Results suggest the rate of signal variations can be reliably used to estimate crack closure and crack initiation stress levels across the tested rocks before failure.Comparison of the results between the conventional techniques and the new proposed methods based on ultrasonic monitoring are further discussed.展开更多
Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement b...Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement between the pin and lug-hole.This causes damage of different sizes and shapes near the lug-hole.Stiffness degradation due to corrosion-induced damage is modelled as a through-pit at one of the identified critical locations through stress analysis.The effect of this pit on fatigue crack initiation life is estimated.Lug-hole is pre-stressed by cold-working and the benefits of inducing plastic wake on the intended performance of the lug joint during the damages due to corrosion are brought out and compared with non-cold-worked lug-hole.Numerical analysis is performed on this lug joint with pressfit.The results obtained highlight the benefits of cold-working and the methodology can be extended to damage growth and analyse the effect of surface treatments for better structural integrity of components of aerospace vehicles.展开更多
This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi...This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.展开更多
The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A...The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A/SSSS) were studied by performing numerical stress analysis on blocks having multi flaws at close spacing's under uniaxial loading using PFC3 D. The following findings are obtained: SCI,B/SUC,B has an average value of about 0.5 with a variability of ± 0.1. This range agrees quite well with the values obtained by former research. For joint inclination angle, β=90°,B,UCB,CI,A,A/SSSS is found to be around 0.48 irrespective of the value of joint continuity factor, k. No particular relation is found betweenB,UCB,CI,A,A/SSSS and β; however, the average B,UCB,CI,A,A/SSSS seems to slightly decrease with increasing k. The variability ofB,UCB,CI,A,A/SSSS is found to increase with k.Based on the cases studied in this work,B,UCB,CI,A,A/SSSS ranges between 0.3 and 0.5. This range is quite close to the range of 0.4to 0.6 obtained for SCI,B/SUC,B. The highest variability of ± 0.12 forB,UCB,CI,A,A/SSSS is obtained for k=0.8. For the remaining k values the variability ofB,UCB,CI,A,A/SSSS can be expressed within ± 0.05. This finding is very similar to the finding obtained for the variability of SCI,B/SUC,B.展开更多
Based on the theory of hydrogen enhanced localized plasticity of the hydrogen induced cracking and the consideration of the effect of the residual stress produced by eliminated stress heat-treatment, a fractal model o...Based on the theory of hydrogen enhanced localized plasticity of the hydrogen induced cracking and the consideration of the effect of the residual stress produced by eliminated stress heat-treatment, a fractal model of hydrogen induced cracking was presented, and the relationships among the effective surface energy (H), fractal dimension D and stress intensity factor of hydrogen induced cracking, KIH, for welding pipeline under hydrogen environment was set up, from which the relationship of D and KISCC was obtained. The model has been verified experimentally to be correct.展开更多
A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-de...A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-designed test setup.Experiments are conducted on the fishbone shaped specimen under conventional welding and welding with various pre-stress values.The experimental results turn out that,the initiation rate of the weld hot cracks decreases with increasing values of the compressive pre-stress.When the pre-stress reaches 0.3-0.4 of the yield stress,the cracks even disappear.In mechanical viewpoint,the researches here develop a new way to control weld cracks.展开更多
The behavior of part-through and through short cracks in single edge blunt notched specimens of a medium carbon steel was investigated by a replication method. It is found that the fatigue failure of these notched spe...The behavior of part-through and through short cracks in single edge blunt notched specimens of a medium carbon steel was investigated by a replication method. It is found that the fatigue failure of these notched specimens is caused mainly by the growth of short surface cracks originating from the surface of notch root. More than 70% of the fatigue life is spent in the regimes in which short surface cracks initiate and propagate as part-through cracks before joining up to form a single through-thickness crack. The effect of original crack profile which is formed through the coalescence of multiple part-through cracks is the main reason causing the 'anomalous' propagation behavior of the through-thickness crack in its early stage.展开更多
Rotary bending fatigue tests were carried out using smooth specimens of a medium-carbon steel with two different grain sizes.The process of early crack development was observed by the replica method,and the effects of...Rotary bending fatigue tests were carried out using smooth specimens of a medium-carbon steel with two different grain sizes.The process of early crack development was observed by the replica method,and the effects of grain size and microstructure on short crack development were studied.It was shown that the initiation process of fatigue cracks is that the damaged region is intensified gradually,and the growth of short cracks relates to the coalescence of cracks.The grain size and microstructure have a great influence upon the initiation and growth of short cracks.A reasonable definition was given in relation to short fatigue crack initiation and propagation.展开更多
In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests ...In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests were implemented in the drop plate impact device.Strain gauges were employed to measure impact loads and crack initiation time.The corresponding numerical model was established by using the dynamic finite difference program AUTODYN,and the experimental-numerical method and ABAQUS code were utilized to obtain the initial fracture toughness of the crack.Using experiments and numerical research,we concluded that the DCCP specimen is suitable for measuring the initial fracture toughness of pure mode Ⅰ and mode Ⅱ cracks at the same time;the dynamic initiation toughness increases with the increase of loading rate and the crack initiation time decreases with increasing loading rate;the initiation toughness of mode Ⅱ crack is 0.5 times that of mode Ⅰ crack when subjected to the same loading rate.For the pre-crack in the vicinity of the bottom of a sample,when its length increases from 20 to 100 mm,the dynamic initiation toughness of the pure mode Ⅰ crack gradually decreases,and the longer the lower crack length is,the easier the crack would initiate,but the dynamic initiation toughness of pure mode Ⅱ crack varies little.展开更多
In order to clarify the physical background of the scatter in fatigue behaviour, rotary bending fatigue tests are carried out using smooth speciments of a medium carbon steel with two kinds of grain sizes. The statis...In order to clarify the physical background of the scatter in fatigue behaviour, rotary bending fatigue tests are carried out using smooth speciments of a medium carbon steel with two kinds of grain sizes. The statistical characteristics of short carck initiation and growth lives are investigated by a new definition of short fatigue crack initiation. Detailed analysis reveals that the distribution of short crack initiation life can be expressed by two or threeparameter Weibull distribution, and the threeparameter Weibull distribution is well fitted to the distribution of short crack growth life, and the grain size and stress level have a great influence on the statistical characteristics of crack initiation and growth life.展开更多
Transverse crack often occurs in the trailing edge region of the bladewhen subjected to the excessive edgewise fatigue load.In this paper a refined model was established through local mesh refinement methods in order ...Transverse crack often occurs in the trailing edge region of the bladewhen subjected to the excessive edgewise fatigue load.In this paper a refined model was established through local mesh refinement methods in order to investigate the initiation mechanism of crack and its extension in blade trailing edge.The material stress around the crack in trailing edge region under different thicknesses is calculated based on the fracture mechanics theory.The factors affecting the fatigue robustness of blade trailing edge are concluded by investigating the results of finite element analysis and coupons test.Compared with the laminate,the lower fatigue strength of the adhesive is the cause of the transverse crack of the adhesive joint at the trailing edge.The increase of the adhesive thickness at the adhesive joint will significantly increase the stress concentration factor at the crack region and accelerate the crack extension of the laminate.In final,a practical design scheme to prevent crack initiation is given for the manufacture of the wind turbine blade.展开更多
For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of inte...For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of interface mechanics for composite materials,the interface stresses of the vertical and horizontal joints,which are the two primary joints in the CJRM under triaxial compression,are studied,and their mathematical expressions are derived based on the superposition principle.Based on the obtained interface stresses of the vertical and horizontal joints in the CJRM,the crack initiation of the joint interface in the CJRM is studied using the maximum circumferential stress theory in fracture mechanics.Moreover,based on this investigation,the fracture behaviors of CJRM are analyzed.According to the results of similar material physical model tests for the CJRM,the theoretical study is verified.Finally,the influence of the mechanical parameters of the CJRM on the joint interface stress is discussed comprehensively.展开更多
The prediction of wheel/rail rolling contact fatigue(RCF)crack initiation during railway operations is an important task.Since RCF crack evolution is influenced by many factors,its prediction process is complex.This p...The prediction of wheel/rail rolling contact fatigue(RCF)crack initiation during railway operations is an important task.Since RCF crack evolution is influenced by many factors,its prediction process is complex.This paper reviews the existing approaches to predict RCF crack initiation.The crack initiation region is predicted by the shakedown map.By combining the shakedown map with various initiation criteria and the critical plane method,the crack initiation life is calculated.The classification,methodologies,theories and applications of these approaches are included in this paper.The advantages and limitations of these methods are analyzed to provide recommendation for RCF crack initiation prediction.This review highlights that wheel/rail dynamic characteristic,complex working conditions,surface defects and wear all affect the RCF crack initiation.The optimal selection of criteria is essential in the crack initiation prediction.Based on the research gap regarding the challenging process of crack initiation prediction detailed in this review,a proposed prediction process of RCF crack initiation is proposed to achieve a more accurate result.展开更多
Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on th...Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior.展开更多
Crack patterns observed in nature have attracted the interest of researchers in various fields, and the mechanism of the pattern formation has been investigated. However, the phenomenon is very complicated, and many f...Crack patterns observed in nature have attracted the interest of researchers in various fields, and the mechanism of the pattern formation has been investigated. However, the phenomenon is very complicated, and many factors affect the process. Therefore, we are motivated to construct a general simulation code with a simple algorithm. In this study, crack pattern formation due to shrinkage caused by the drying of a wet material was simulated. The process was simplified as follows: tensile force is generated in the model, and a crack is generated when the tension exceeds a critical value. The tensile forces in the x and y directions are independently evaluated. A crack propagates perpendicular to the tension until it reaches another crack or a boundary. Based on this modeling, simulations with a two-dimensional square domain were performed. Consequently, a cross-divided pattern was generated. Assuming zigzag crack propagation, more realistic patterns were obtained. The effects of the boundary and domain size were also considered, and various characteristic patterns were obtained. Furthermore, the orientation dependency was simulated, and 45˚ declined patterns and rectangularly divided patterns were generated. The model presented in this study is very simplified and is expected to be applicable to various objects.展开更多
The fatigue crack initiation and early propagation behavior of 2A97 Al-Li alloy was studied. The smooth specimens were fatigued at room temperature under constant maximum stress control when stress ratio (R) is 0.1 ...The fatigue crack initiation and early propagation behavior of 2A97 Al-Li alloy was studied. The smooth specimens were fatigued at room temperature under constant maximum stress control when stress ratio (R) is 0.1 and frequency (f) is 40 Hz. Microstructure observations were examined by optical microscopy, transmission electron microscopy, scanning electron microscopy and electron back scattered diffusion, in order to investigate the relationship between microstructure and fatigue crack initiation and early propagation behavior of 2A97 alloy. The results show that the fatigue cracks are predominantly initiated at inclusions and coarsen secondary phases on the surface of 2A97 alloy. The fatigue crack early propagation behavior of 2A97 alloy is predominantly influenced by the interactions between grain structure and dislocations or persistent slip bands (PSBs). When the misorientation of two neighbouring grains is close to the orientations of the favorable slip plane within these two grains, high-angle grain boundary severely hinders the PSBs passing through, and thus leads to crack bifurcation and deflection.展开更多
Fatigue characteristics of A7N01 aluminium alloy welded joint were investigated and a fatigue crack initiation life-based model was proposed. The difference of fatigue crack initiation life among base metal, weld meta...Fatigue characteristics of A7N01 aluminium alloy welded joint were investigated and a fatigue crack initiation life-based model was proposed. The difference of fatigue crack initiation life among base metal, weld metal and heat affected zone (HAZ) is slight. Furthermore, the ratio of fatigue crack initiation life (Ni) to fatigue life to failure(Nf) is a material dependent parameter, 26.32%, 40.21% and 60.67% for base metal, HAZ and weld metal, respectively. Total fatigue life predicted using the presented model is in good agreement with the experimental data and that using Basquin’s model. The observation results of fatigue fracture surfaces, using scanning electron microscope (SEM), demonstrate that fatigue crack initiates from smooth surface due to welding process for weld metal, blowhole in HAZ causes fatigue crack initiation, and the crushed second phase particles play an important part in fatigue crack initiation in base metal.展开更多
The corrosion fatigue behavior of epoxy-coated Mg-3Al-1Zn alloy in gear oil was investigated. The corrosion and the fracture surfaces after fatigue test were analyzed by scanning electron microscopy(SEM) and the corro...The corrosion fatigue behavior of epoxy-coated Mg-3Al-1Zn alloy in gear oil was investigated. The corrosion and the fracture surfaces after fatigue test were analyzed by scanning electron microscopy(SEM) and the corrosion compositions were measured by energy-dispersive spectrometry(EDS). The fatigue properties and the crack initiation mechanisms of the specimens before and after epoxy coating treatment were discussed. The results indicate that the fatigue limit after epoxy coating treatment in gear oil is higher than that of the uncoated specimens. The epoxy coating is an excellent way to prevent direct contact between the Mg-3Al-1Zn alloy and surrounding environments. The mechanical properties of the epoxy coating layer are lower than that of magnesium alloy, which is the main reason for the fatigue crack initiation on the epoxy coating layer. In addition, the gear oil lubrication could lead to the flaking off of the epoxy-coated layer.展开更多
The thermal fatigue behavior of K465 superalloy was investigated at the peak temperature of 1050℃. By scanning electron microscopy (SEM) and optical microscopy, the main crack length was observed and measured. The ...The thermal fatigue behavior of K465 superalloy was investigated at the peak temperature of 1050℃. By scanning electron microscopy (SEM) and optical microscopy, the main crack length was observed and measured. The initiation sites of the tested alloys are different in as-cast (named as K465) and solution heat treatment (named as SK465) conditions. In K465 alloy, most thermal fatigue cracks nucleate at (Nb,W,Ti)C carbides. In SK465 alloy, thermal fatigue cracks initiate in interdendritic regions, MC-type carbides and some interfaces. Thermal fatigue cracks propagate in transdendritic mode, and M6C-type carbides could retard thermal fatigue crack growth for SK465 superalloy.展开更多
文摘This paper deals with the mechanism of the formation of initial cracks in the yttria partially stabilized zirconia thermal barrier coatings prepared by EB-PVD method.The microcracks were only recognized inside the ceramic top coat of the thermalcycled TBCs. SEM/EDS observations indicated that some special oxides exist in the area just below the cracks.It seems that the formation of the initial cracks can result from the oxidation stress as well as the thermal stress.
基金support from the Australian Research Council(ARC)through Discovery Project DP210102224.
文摘The crack initiation stress threshold is widely used in excavation industries as rock spalling strength when designing deep underground structures to avoid unwanted brittle failures.While various strain-based methods have been developed for the estimation of this critical design parameter,such methods are destructive and often requires subjective interpretations of the stress–strain curves,particularly in rocks with pre-existing microcracks or high porosity.This study explore the applicability of non-destructive ultrasonic through-transmission methods for determining rock damage levels by assessing the changes in transmitted signal characteristics during loading.The change in velocity,amplitude,dominant frequency,and root-mean-square voltage are investigated with four different rock types including marble,sandstone,granite,and basalt under various stress levels.Results suggest the rate of signal variations can be reliably used to estimate crack closure and crack initiation stress levels across the tested rocks before failure.Comparison of the results between the conventional techniques and the new proposed methods based on ultrasonic monitoring are further discussed.
文摘Lug joints are preferred joineries for transferring heavy loads to parent components in aerospace vehicles.They experience corrosion due to environmental conditions,improper surface finishes and rubbing displacement between the pin and lug-hole.This causes damage of different sizes and shapes near the lug-hole.Stiffness degradation due to corrosion-induced damage is modelled as a through-pit at one of the identified critical locations through stress analysis.The effect of this pit on fatigue crack initiation life is estimated.Lug-hole is pre-stressed by cold-working and the benefits of inducing plastic wake on the intended performance of the lug joint during the damages due to corrosion are brought out and compared with non-cold-worked lug-hole.Numerical analysis is performed on this lug joint with pressfit.The results obtained highlight the benefits of cold-working and the methodology can be extended to damage growth and analyse the effect of surface treatments for better structural integrity of components of aerospace vehicles.
基金Project(11272119)supported by the National Natural Science Foundation of China。
文摘This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications.
基金Project(11102224)supported by the National Natural Science Foundation of ChinaProject(201206370124)supported by the China Scholarship Council,China
文摘The ratio of crack initiation stress to the uniaxial compressive strength(SCI,B/SUC,B) and the ratio of axial strain at the crack initiation stress to the axial strain at the uniaxial compressive strength(B,UCB,CI,A,A/SSSS) were studied by performing numerical stress analysis on blocks having multi flaws at close spacing's under uniaxial loading using PFC3 D. The following findings are obtained: SCI,B/SUC,B has an average value of about 0.5 with a variability of ± 0.1. This range agrees quite well with the values obtained by former research. For joint inclination angle, β=90°,B,UCB,CI,A,A/SSSS is found to be around 0.48 irrespective of the value of joint continuity factor, k. No particular relation is found betweenB,UCB,CI,A,A/SSSS and β; however, the average B,UCB,CI,A,A/SSSS seems to slightly decrease with increasing k. The variability ofB,UCB,CI,A,A/SSSS is found to increase with k.Based on the cases studied in this work,B,UCB,CI,A,A/SSSS ranges between 0.3 and 0.5. This range is quite close to the range of 0.4to 0.6 obtained for SCI,B/SUC,B. The highest variability of ± 0.12 forB,UCB,CI,A,A/SSSS is obtained for k=0.8. For the remaining k values the variability ofB,UCB,CI,A,A/SSSS can be expressed within ± 0.05. This finding is very similar to the finding obtained for the variability of SCI,B/SUC,B.
文摘Based on the theory of hydrogen enhanced localized plasticity of the hydrogen induced cracking and the consideration of the effect of the residual stress produced by eliminated stress heat-treatment, a fractal model of hydrogen induced cracking was presented, and the relationships among the effective surface energy (H), fractal dimension D and stress intensity factor of hydrogen induced cracking, KIH, for welding pipeline under hydrogen environment was set up, from which the relationship of D and KISCC was obtained. The model has been verified experimentally to be correct.
文摘A new ideological and theoretical model—a technology to control weld hot cracks by transverse compressive pre-stress in the welding of aluminum alloy was put forward,which was further proved by the subsequent self-designed test setup.Experiments are conducted on the fishbone shaped specimen under conventional welding and welding with various pre-stress values.The experimental results turn out that,the initiation rate of the weld hot cracks decreases with increasing values of the compressive pre-stress.When the pre-stress reaches 0.3-0.4 of the yield stress,the cracks even disappear.In mechanical viewpoint,the researches here develop a new way to control weld cracks.
文摘The behavior of part-through and through short cracks in single edge blunt notched specimens of a medium carbon steel was investigated by a replication method. It is found that the fatigue failure of these notched specimens is caused mainly by the growth of short surface cracks originating from the surface of notch root. More than 70% of the fatigue life is spent in the regimes in which short surface cracks initiate and propagate as part-through cracks before joining up to form a single through-thickness crack. The effect of original crack profile which is formed through the coalescence of multiple part-through cracks is the main reason causing the 'anomalous' propagation behavior of the through-thickness crack in its early stage.
文摘Rotary bending fatigue tests were carried out using smooth specimens of a medium-carbon steel with two different grain sizes.The process of early crack development was observed by the replica method,and the effects of grain size and microstructure on short crack development were studied.It was shown that the initiation process of fatigue cracks is that the damaged region is intensified gradually,and the growth of short cracks relates to the coalescence of cracks.The grain size and microstructure have a great influence upon the initiation and growth of short cracks.A reasonable definition was given in relation to short fatigue crack initiation and propagation.
基金Projects(U19A2098,1210021843)supported by the National Natural Science Foundation of ChinaProject(2021SCU12130)supported by Fundamental Research Funds for the Central Universities,China+1 种基金Project(2021YJ0511)supported by the Sichuan Science and Technology Program,ChinaProjects(DESEYU202205,DESE202005)supported by the Open Fund of Key Laboratory of Deep Earth Science and Engineering,China。
文摘In order to simultaneously measure the initiation toughness of pure mode Ⅰ and mode Ⅱ cracks in one specimen,a large-size double-cracked concave-convex plate(DCCP)specimen configuration was proposed.Impacting tests were implemented in the drop plate impact device.Strain gauges were employed to measure impact loads and crack initiation time.The corresponding numerical model was established by using the dynamic finite difference program AUTODYN,and the experimental-numerical method and ABAQUS code were utilized to obtain the initial fracture toughness of the crack.Using experiments and numerical research,we concluded that the DCCP specimen is suitable for measuring the initial fracture toughness of pure mode Ⅰ and mode Ⅱ cracks at the same time;the dynamic initiation toughness increases with the increase of loading rate and the crack initiation time decreases with increasing loading rate;the initiation toughness of mode Ⅱ crack is 0.5 times that of mode Ⅰ crack when subjected to the same loading rate.For the pre-crack in the vicinity of the bottom of a sample,when its length increases from 20 to 100 mm,the dynamic initiation toughness of the pure mode Ⅰ crack gradually decreases,and the longer the lower crack length is,the easier the crack would initiate,but the dynamic initiation toughness of pure mode Ⅱ crack varies little.
文摘In order to clarify the physical background of the scatter in fatigue behaviour, rotary bending fatigue tests are carried out using smooth speciments of a medium carbon steel with two kinds of grain sizes. The statistical characteristics of short carck initiation and growth lives are investigated by a new definition of short fatigue crack initiation. Detailed analysis reveals that the distribution of short crack initiation life can be expressed by two or threeparameter Weibull distribution, and the threeparameter Weibull distribution is well fitted to the distribution of short crack growth life, and the grain size and stress level have a great influence on the statistical characteristics of crack initiation and growth life.
基金This research was funded by Natural Science Foundation of Shandong Province(Grant No.ZR2019MEE076)National Natural Science Foundation of China(Grant No.52075305).
文摘Transverse crack often occurs in the trailing edge region of the bladewhen subjected to the excessive edgewise fatigue load.In this paper a refined model was established through local mesh refinement methods in order to investigate the initiation mechanism of crack and its extension in blade trailing edge.The material stress around the crack in trailing edge region under different thicknesses is calculated based on the fracture mechanics theory.The factors affecting the fatigue robustness of blade trailing edge are concluded by investigating the results of finite element analysis and coupons test.Compared with the laminate,the lower fatigue strength of the adhesive is the cause of the transverse crack of the adhesive joint at the trailing edge.The increase of the adhesive thickness at the adhesive joint will significantly increase the stress concentration factor at the crack region and accelerate the crack extension of the laminate.In final,a practical design scheme to prevent crack initiation is given for the manufacture of the wind turbine blade.
基金funding support from National Natural Science Foundation of China(Grant No.41831278).
文摘For a special geological structure of columnar jointed rock mass(CJRM),its mechanical properties are strongly affected by the columnar joints.To describe the fracture behaviors of CJRM using the basic theories of interface mechanics for composite materials,the interface stresses of the vertical and horizontal joints,which are the two primary joints in the CJRM under triaxial compression,are studied,and their mathematical expressions are derived based on the superposition principle.Based on the obtained interface stresses of the vertical and horizontal joints in the CJRM,the crack initiation of the joint interface in the CJRM is studied using the maximum circumferential stress theory in fracture mechanics.Moreover,based on this investigation,the fracture behaviors of CJRM are analyzed.According to the results of similar material physical model tests for the CJRM,the theoretical study is verified.Finally,the influence of the mechanical parameters of the CJRM on the joint interface stress is discussed comprehensively.
基金supported by National Natural Science Foundation of China(Nos.52202510,U21A20167,52272443 and 51975489)Autonomous Research Project of State Key Laboratory(Nos.2020TPL-T10 and 2022TPL-T04)+1 种基金For a scholarship to S.Y.Zhang,under the State Scholarship Fund of the China Scholarship Council(CSC)(No.202007000128)to pursue study in the Central Queensland University as a cotutelle PhD Student.Dr.Qing Wu is the recipient of an Australian Research Council Discovery Early Career Award(Project Number DE210100273)funded by the Australian Government.
文摘The prediction of wheel/rail rolling contact fatigue(RCF)crack initiation during railway operations is an important task.Since RCF crack evolution is influenced by many factors,its prediction process is complex.This paper reviews the existing approaches to predict RCF crack initiation.The crack initiation region is predicted by the shakedown map.By combining the shakedown map with various initiation criteria and the critical plane method,the crack initiation life is calculated.The classification,methodologies,theories and applications of these approaches are included in this paper.The advantages and limitations of these methods are analyzed to provide recommendation for RCF crack initiation prediction.This review highlights that wheel/rail dynamic characteristic,complex working conditions,surface defects and wear all affect the RCF crack initiation.The optimal selection of criteria is essential in the crack initiation prediction.Based on the research gap regarding the challenging process of crack initiation prediction detailed in this review,a proposed prediction process of RCF crack initiation is proposed to achieve a more accurate result.
基金The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.12072212 and 11832007)the National Key Research and Development Program of China(No.2018YFE0307104)the Applied Basic Research Programs of Sichuan Province(No.2021YJ0071).We also highly appreciate the help of Dr.Yan Li from the Department of Mechanics,Sichuan University.
文摘Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior.
文摘Crack patterns observed in nature have attracted the interest of researchers in various fields, and the mechanism of the pattern formation has been investigated. However, the phenomenon is very complicated, and many factors affect the process. Therefore, we are motivated to construct a general simulation code with a simple algorithm. In this study, crack pattern formation due to shrinkage caused by the drying of a wet material was simulated. The process was simplified as follows: tensile force is generated in the model, and a crack is generated when the tension exceeds a critical value. The tensile forces in the x and y directions are independently evaluated. A crack propagates perpendicular to the tension until it reaches another crack or a boundary. Based on this modeling, simulations with a two-dimensional square domain were performed. Consequently, a cross-divided pattern was generated. Assuming zigzag crack propagation, more realistic patterns were obtained. The effects of the boundary and domain size were also considered, and various characteristic patterns were obtained. Furthermore, the orientation dependency was simulated, and 45˚ declined patterns and rectangularly divided patterns were generated. The model presented in this study is very simplified and is expected to be applicable to various objects.
文摘The fatigue crack initiation and early propagation behavior of 2A97 Al-Li alloy was studied. The smooth specimens were fatigued at room temperature under constant maximum stress control when stress ratio (R) is 0.1 and frequency (f) is 40 Hz. Microstructure observations were examined by optical microscopy, transmission electron microscopy, scanning electron microscopy and electron back scattered diffusion, in order to investigate the relationship between microstructure and fatigue crack initiation and early propagation behavior of 2A97 alloy. The results show that the fatigue cracks are predominantly initiated at inclusions and coarsen secondary phases on the surface of 2A97 alloy. The fatigue crack early propagation behavior of 2A97 alloy is predominantly influenced by the interactions between grain structure and dislocations or persistent slip bands (PSBs). When the misorientation of two neighbouring grains is close to the orientations of the favorable slip plane within these two grains, high-angle grain boundary severely hinders the PSBs passing through, and thus leads to crack bifurcation and deflection.
文摘Fatigue characteristics of A7N01 aluminium alloy welded joint were investigated and a fatigue crack initiation life-based model was proposed. The difference of fatigue crack initiation life among base metal, weld metal and heat affected zone (HAZ) is slight. Furthermore, the ratio of fatigue crack initiation life (Ni) to fatigue life to failure(Nf) is a material dependent parameter, 26.32%, 40.21% and 60.67% for base metal, HAZ and weld metal, respectively. Total fatigue life predicted using the presented model is in good agreement with the experimental data and that using Basquin’s model. The observation results of fatigue fracture surfaces, using scanning electron microscope (SEM), demonstrate that fatigue crack initiates from smooth surface due to welding process for weld metal, blowhole in HAZ causes fatigue crack initiation, and the crushed second phase particles play an important part in fatigue crack initiation in base metal.
基金Projects(51001079,21201129,51208333,51374151)supported by the National Natural Science Foundation of ChinaProject(201101102002)supported by the Natural Science Foundation of Shanxi Province,China+1 种基金Project(20100471586)supported by the China Postdoctoral Science FoundationProject(20091402110010)supported by the Doctoral Fund of Ministry of Education of China
文摘The corrosion fatigue behavior of epoxy-coated Mg-3Al-1Zn alloy in gear oil was investigated. The corrosion and the fracture surfaces after fatigue test were analyzed by scanning electron microscopy(SEM) and the corrosion compositions were measured by energy-dispersive spectrometry(EDS). The fatigue properties and the crack initiation mechanisms of the specimens before and after epoxy coating treatment were discussed. The results indicate that the fatigue limit after epoxy coating treatment in gear oil is higher than that of the uncoated specimens. The epoxy coating is an excellent way to prevent direct contact between the Mg-3Al-1Zn alloy and surrounding environments. The mechanical properties of the epoxy coating layer are lower than that of magnesium alloy, which is the main reason for the fatigue crack initiation on the epoxy coating layer. In addition, the gear oil lubrication could lead to the flaking off of the epoxy-coated layer.
文摘The thermal fatigue behavior of K465 superalloy was investigated at the peak temperature of 1050℃. By scanning electron microscopy (SEM) and optical microscopy, the main crack length was observed and measured. The initiation sites of the tested alloys are different in as-cast (named as K465) and solution heat treatment (named as SK465) conditions. In K465 alloy, most thermal fatigue cracks nucleate at (Nb,W,Ti)C carbides. In SK465 alloy, thermal fatigue cracks initiate in interdendritic regions, MC-type carbides and some interfaces. Thermal fatigue cracks propagate in transdendritic mode, and M6C-type carbides could retard thermal fatigue crack growth for SK465 superalloy.