For a given Hermitian Hamiltonian H(s)(s∈[0,1])with eigenvalues Ek(s)and the corresponding eigenstates|Ek(s)(1 k N),adiabatic evolution described by the dilated Hamiltonian HT(t):=H(t/T)(t∈[0,T])starting from any fi...For a given Hermitian Hamiltonian H(s)(s∈[0,1])with eigenvalues Ek(s)and the corresponding eigenstates|Ek(s)(1 k N),adiabatic evolution described by the dilated Hamiltonian HT(t):=H(t/T)(t∈[0,T])starting from any fixed eigenstate|En(0)is discussed in this paper.Under the gap-condition that|Ek(s)-En(s)|λ>0 for all s∈[0,1]and all k n,computable upper bounds for the adiabatic approximation errors between the exact solution|ψT(t)and the adiabatic approximation solution|ψadi T(t)to the Schr¨odinger equation i|˙ψT(t)=HT(t)|ψT(t)with the initial condition|ψT(0)=|En(0)are given in terms of fidelity and distance,respectively.As an application,it is proved that when the total evolving time T goes to infinity,|ψT(t)-|ψadi T(t)converges uniformly to zero,which implies that|ψT(t)≈|ψadi T(t)for all t∈[0,T]provided that T is large enough.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11171197,11371012)the Science Foundation of Weinan Normal University(Grant No.14YKS006)+4 种基金the Foundation of Mathematics Subject of Provincial Supporting Subject of Shaanxi Provincethe Civil-Military Integration Research Foundation of Shaanxi Province(No.13JMR12)the Fundamental Research Funds for the Central Universities(Nos.GK201402005,GK201301007)China Postdoctoral Science Foundation(No.2014M552405)the Natural Science Research Program of Shaanxi Province(No.2014JQ1010)
文摘For a given Hermitian Hamiltonian H(s)(s∈[0,1])with eigenvalues Ek(s)and the corresponding eigenstates|Ek(s)(1 k N),adiabatic evolution described by the dilated Hamiltonian HT(t):=H(t/T)(t∈[0,T])starting from any fixed eigenstate|En(0)is discussed in this paper.Under the gap-condition that|Ek(s)-En(s)|λ>0 for all s∈[0,1]and all k n,computable upper bounds for the adiabatic approximation errors between the exact solution|ψT(t)and the adiabatic approximation solution|ψadi T(t)to the Schr¨odinger equation i|˙ψT(t)=HT(t)|ψT(t)with the initial condition|ψT(0)=|En(0)are given in terms of fidelity and distance,respectively.As an application,it is proved that when the total evolving time T goes to infinity,|ψT(t)-|ψadi T(t)converges uniformly to zero,which implies that|ψT(t)≈|ψadi T(t)for all t∈[0,T]provided that T is large enough.