期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Computable upper bounds for the adiabatic approximation errors 被引量:2
1
作者 YU BaoMin CAO HuaiXin +1 位作者 GUO ZhiHua WANG WenHua 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第11期2031-2038,共8页
For a given Hermitian Hamiltonian H(s)(s∈[0,1])with eigenvalues Ek(s)and the corresponding eigenstates|Ek(s)(1 k N),adiabatic evolution described by the dilated Hamiltonian HT(t):=H(t/T)(t∈[0,T])starting from any fi... For a given Hermitian Hamiltonian H(s)(s∈[0,1])with eigenvalues Ek(s)and the corresponding eigenstates|Ek(s)(1 k N),adiabatic evolution described by the dilated Hamiltonian HT(t):=H(t/T)(t∈[0,T])starting from any fixed eigenstate|En(0)is discussed in this paper.Under the gap-condition that|Ek(s)-En(s)|λ>0 for all s∈[0,1]and all k n,computable upper bounds for the adiabatic approximation errors between the exact solution|ψT(t)and the adiabatic approximation solution|ψadi T(t)to the Schr¨odinger equation i|˙ψT(t)=HT(t)|ψT(t)with the initial condition|ψT(0)=|En(0)are given in terms of fidelity and distance,respectively.As an application,it is proved that when the total evolving time T goes to infinity,|ψT(t)-|ψadi T(t)converges uniformly to zero,which implies that|ψT(t)≈|ψadi T(t)for all t∈[0,T]provided that T is large enough. 展开更多
关键词 adiabatic bounds Hamiltonian fidelity Hermitian dilated numerically exact initially coherent
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部