Using predictions for the sea surface temperature anomaly(SSTA) generated by an intermediate coupled model(ICM)ensemble prediction system(EPS), we first explore the "spring predictability barrier"(SPB) probl...Using predictions for the sea surface temperature anomaly(SSTA) generated by an intermediate coupled model(ICM)ensemble prediction system(EPS), we first explore the "spring predictability barrier"(SPB) problem for the 2015/16 strong El Nio event from the perspective of error growth. By analyzing the growth tendency of the prediction errors for ensemble forecast members, we conclude that the prediction errors for the 2015/16 El Nio event tended to show a distinct season-dependent evolution, with prominent growth in spring and/or the beginning of the summer. This finding indicates that the predictions for the 2015/16 El Nio occurred a significant SPB phenomenon. We show that the SPB occurred in the 2015/16 El Nio predictions did not arise because of the uncertainties in the initial conditions but because of model errors. As such, the mean of ensemble forecast members filtered the effect of model errors and weakened the effect of the SPB, ultimately reducing the prediction errors for the 2015/16 El Nio event. By investigating the model errors represented by the tendency errors for the SSTA component,we demonstrate the prominent features of the tendency errors that often cause an SPB for the 2015/16 El Nio event and explain why the 2015/16 El Nio was under-predicted by the ICM EPS. Moreover, we reveal the typical feature of the tendency errors that cause not only a significant SPB but also an aggressively large prediction error. The feature is that the tendency errors present a zonal dipolar pattern with the west poles of positive anomalies in the equatorial western Pacific and the east poles of negative anomalies in the equatorial eastern Pacific. This tendency error bears great similarities with that of the most sensitive nonlinear forcing singular vector(NFSV)-tendency errors reported by Duan et al. and demonstrates the existence of an NFSV tendency error in realistic predictions. For other strong El Nio events, such as those that occurred in 1982/83 and 1997/98, we obtain the tendency errors of the NFSV structure, which cause a significant SPB and yield a much larger prediction error. These results suggest that the forecast skill of the ICM EPS for strong El Nio events could be greatly enhanced by using the NFSV-like tendency error to correct the model.展开更多
Alternative translational initiation is an important mechanism to increase the diversity of gene products. Although some of alternative translational initiation events have been reported, such information remains anec...Alternative translational initiation is an important mechanism to increase the diversity of gene products. Although some of alternative translational initiation events have been reported, such information remains anecdotal and does not allow for any generalizations. The number of the known alternative translational initiation genes is so few that we know little about its mechanism. There is a great demand to discover more alternative translational initiation genes. However, it is arduously time-consuming to discover novel alternative translational initiation genes by the experimental method. Therefore we systematically analyzed protein sequences available in public database and predicted 1237 protein clusters as potential alternative translational initiation events. We concluded that about 8%—10% of human genes have alternative translational initiation sites. The results significantly increased the number of alternative translation initiation events and indicated that alternative translation initiation is an important and general regulation mechanism in the cellular process.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41230420 & 41525017)the National Public Benefit (Meteorology) Research Foundation of China (Grant No. GYHY201306018)
文摘Using predictions for the sea surface temperature anomaly(SSTA) generated by an intermediate coupled model(ICM)ensemble prediction system(EPS), we first explore the "spring predictability barrier"(SPB) problem for the 2015/16 strong El Nio event from the perspective of error growth. By analyzing the growth tendency of the prediction errors for ensemble forecast members, we conclude that the prediction errors for the 2015/16 El Nio event tended to show a distinct season-dependent evolution, with prominent growth in spring and/or the beginning of the summer. This finding indicates that the predictions for the 2015/16 El Nio occurred a significant SPB phenomenon. We show that the SPB occurred in the 2015/16 El Nio predictions did not arise because of the uncertainties in the initial conditions but because of model errors. As such, the mean of ensemble forecast members filtered the effect of model errors and weakened the effect of the SPB, ultimately reducing the prediction errors for the 2015/16 El Nio event. By investigating the model errors represented by the tendency errors for the SSTA component,we demonstrate the prominent features of the tendency errors that often cause an SPB for the 2015/16 El Nio event and explain why the 2015/16 El Nio was under-predicted by the ICM EPS. Moreover, we reveal the typical feature of the tendency errors that cause not only a significant SPB but also an aggressively large prediction error. The feature is that the tendency errors present a zonal dipolar pattern with the west poles of positive anomalies in the equatorial western Pacific and the east poles of negative anomalies in the equatorial eastern Pacific. This tendency error bears great similarities with that of the most sensitive nonlinear forcing singular vector(NFSV)-tendency errors reported by Duan et al. and demonstrates the existence of an NFSV tendency error in realistic predictions. For other strong El Nio events, such as those that occurred in 1982/83 and 1997/98, we obtain the tendency errors of the NFSV structure, which cause a significant SPB and yield a much larger prediction error. These results suggest that the forecast skill of the ICM EPS for strong El Nio events could be greatly enhanced by using the NFSV-like tendency error to correct the model.
基金the National Natural Science Foundation of China (Grant Nos. 60234020 and 60572086) Tsinghua Basic Research Foundation
文摘Alternative translational initiation is an important mechanism to increase the diversity of gene products. Although some of alternative translational initiation events have been reported, such information remains anecdotal and does not allow for any generalizations. The number of the known alternative translational initiation genes is so few that we know little about its mechanism. There is a great demand to discover more alternative translational initiation genes. However, it is arduously time-consuming to discover novel alternative translational initiation genes by the experimental method. Therefore we systematically analyzed protein sequences available in public database and predicted 1237 protein clusters as potential alternative translational initiation events. We concluded that about 8%—10% of human genes have alternative translational initiation sites. The results significantly increased the number of alternative translation initiation events and indicated that alternative translation initiation is an important and general regulation mechanism in the cellular process.