Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument...Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument for IEERG measurement was developed.Compared with previous setups,the new one which is equipped with three convergent nozzles and quick-release mechanism gets improved in data acquisition and gas sealing and releasing performance.To comprehensively know the effect of gas pressure,particle size,and nozzle area on IEERG,a series of experiments were carried out with this new setup.The variable control test results indicated that the gas pressure-IEERG curves remain the linear trend and the particle size-IEERG curves maintain the negative exponential trend for nozzle areas at 1.13,2.26,and3.39 mm2,respectively.The increase in nozzle area leads to deceases in value of IEERG and absolute value of slope of fitting curves in each test.In addition,the orthogonal experiment showed that the influence of gas pressure,nozzle area,and particle size on IEERG decreases in turn.Only gas pressure had a marked impact on IEERG.This work offers great importance in improving the accuracy of prediction of coal and gas outburst.展开更多
Northern peatlands represent one of the largest biospheric carbon reservoirs in the world.Their southern margins act as new carbon reservoirs,which can greatly influence the global carbon dynamics.However,the Holocene...Northern peatlands represent one of the largest biospheric carbon reservoirs in the world.Their southern margins act as new carbon reservoirs,which can greatly influence the global carbon dynamics.However,the Holocene initiation,expansion and climate sensitivity of these peatlands remain intensely debated.Here we used a compilation of basal peat ages across six isolated peatlands at the southern margins of northern peatlands to address these issues.We found that the earliest initiation event of these peatlands occurred after the Younger Dryas(YD,12,800–11,700 years ago)period.The second initiation event and rapid expansion occurred since 5 ka cal.BP.The recession of East Asian summer monsoon(EASM)during the YD period and at around 5 ka cal.BP likely played a major role in controlling the initiation and expansion of these peatlands.The rapid expansion of these peatlands possibly contributed to the significant increases in atmospheric methane concentrations during the late Holocene because of the minerotrophic fens status and rapid expansion of them.These ecological processes are different from northern peatlands,indicating the special carbon sink and source implications of these peatlands in the global carbon cycle.展开更多
基金supported by the National Key Scientific Instruments and Equipment Development Projects of China(No.51427804)the National Science Foundation of Shandong Province(No.ZR2017MEE023)。
文摘Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument for IEERG measurement was developed.Compared with previous setups,the new one which is equipped with three convergent nozzles and quick-release mechanism gets improved in data acquisition and gas sealing and releasing performance.To comprehensively know the effect of gas pressure,particle size,and nozzle area on IEERG,a series of experiments were carried out with this new setup.The variable control test results indicated that the gas pressure-IEERG curves remain the linear trend and the particle size-IEERG curves maintain the negative exponential trend for nozzle areas at 1.13,2.26,and3.39 mm2,respectively.The increase in nozzle area leads to deceases in value of IEERG and absolute value of slope of fitting curves in each test.In addition,the orthogonal experiment showed that the influence of gas pressure,nozzle area,and particle size on IEERG decreases in turn.Only gas pressure had a marked impact on IEERG.This work offers great importance in improving the accuracy of prediction of coal and gas outburst.
基金supported by the Science and Technology Development Plan of Jilin Province(Grant No.YDZJ202201-ZYTS471)the National Natural Science Foundation of China(Grant No.42071121)supported by“the Fundamental Research Funds for the Central Universities”(Grant No.2412022ZD023).
文摘Northern peatlands represent one of the largest biospheric carbon reservoirs in the world.Their southern margins act as new carbon reservoirs,which can greatly influence the global carbon dynamics.However,the Holocene initiation,expansion and climate sensitivity of these peatlands remain intensely debated.Here we used a compilation of basal peat ages across six isolated peatlands at the southern margins of northern peatlands to address these issues.We found that the earliest initiation event of these peatlands occurred after the Younger Dryas(YD,12,800–11,700 years ago)period.The second initiation event and rapid expansion occurred since 5 ka cal.BP.The recession of East Asian summer monsoon(EASM)during the YD period and at around 5 ka cal.BP likely played a major role in controlling the initiation and expansion of these peatlands.The rapid expansion of these peatlands possibly contributed to the significant increases in atmospheric methane concentrations during the late Holocene because of the minerotrophic fens status and rapid expansion of them.These ecological processes are different from northern peatlands,indicating the special carbon sink and source implications of these peatlands in the global carbon cycle.