期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental research into the effect of gas pressure,particle size and nozzle area on initial gas-release energy during gas desorption 被引量:5
1
作者 Weitao Hou Hanpeng Wang +3 位作者 Liang Yuan Wei Wang Yang Xue Zhengwei Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期253-263,共11页
Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument... Coal and gas outburst is a violent disaster driven by released energy from gas desorption.The initial expansion energy of released gas(IEERG)is a new method to predict coal and gas outburst.In this paper,an instrument for IEERG measurement was developed.Compared with previous setups,the new one which is equipped with three convergent nozzles and quick-release mechanism gets improved in data acquisition and gas sealing and releasing performance.To comprehensively know the effect of gas pressure,particle size,and nozzle area on IEERG,a series of experiments were carried out with this new setup.The variable control test results indicated that the gas pressure-IEERG curves remain the linear trend and the particle size-IEERG curves maintain the negative exponential trend for nozzle areas at 1.13,2.26,and3.39 mm2,respectively.The increase in nozzle area leads to deceases in value of IEERG and absolute value of slope of fitting curves in each test.In addition,the orthogonal experiment showed that the influence of gas pressure,nozzle area,and particle size on IEERG decreases in turn.Only gas pressure had a marked impact on IEERG.This work offers great importance in improving the accuracy of prediction of coal and gas outburst. 展开更多
关键词 Coal and gas outburst initial expansion energy of released gas Gas pressure Particle size Nozzle area
下载PDF
Kinetics of Soil Potassium Release Under Long-Term Imbalanced Fertilization in Calcareous Soils 被引量:2
2
作者 Akram FATEMI 《Pedosphere》 SCIE CAS CSCD 2017年第6期1105-1115,共11页
Knowledge on potassium ion(K^+) release from soils makes K fertilizer recommendation more efficient and profitable.Kinetics of K^+release under continuous fertilization of no fertilizer(CK), urea(N), triple superphosp... Knowledge on potassium ion(K^+) release from soils makes K fertilizer recommendation more efficient and profitable.Kinetics of K^+release under continuous fertilization of no fertilizer(CK), urea(N), triple superphosphate(P), and urea + triple superphosphate(NP) without K fertilizer was investigated in calcareous(chloritic and kaolinitic) soils on the Miandarband Plain in Kermanshah Province of Iran.The results showed that the kinetics of K^+release included an initial reaction and a slow reaction.The phosphateand NH_4^+-induced K^+release followed the same rate process during the rapid(2–192 h) and slow release periods(192–1 090 h).There were no significant differences in the cumulative K^+released from the chloritic and kaolinitic soils among all the treatments.The cumulative K^+released was positively correlated with P adsorption capacity for the chloritic(r = 0.461, P < 0.05) and kaolinitic soils(r = 0.625, P < 0.01), and negatively correlated with K fixation potential for the chloritic(r = 0.720, P < 0.01) and kaolinitic soils(r =-0.513, P < 0.01).There was a significant(P < 0.001) interactive effect of K fixation potential × P adsorption capacity on the cumulative K^+released for both soil groups.The initial release rate(IRR) index(a·b, where a and b are the rate coefficients of the power function equation) for the chloritic soils was significantly(P < 0.05) higher under applications of P and NP than N and CK.The IRR index values among different fertilization treatments were in the order of NP = P > N = CK for the chloritic soils, and N =P > NP > CK for the kaolinitic soils.This study showed that K fixation potential and P adsorption capacities controlled K^+release from soils.This information will be helpful for precise fertilizer recommendations for the studied soils. 展开更多
关键词 clay mineralogy initial release rate index K fixation potential P adsorption capacity triple superphosphate UREA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部