Initial residual stress is the main reason causing machining deformation of the workpiece,which has been deemed as one of the most important aspects of machining quality issues.The inference of the distribution of ini...Initial residual stress is the main reason causing machining deformation of the workpiece,which has been deemed as one of the most important aspects of machining quality issues.The inference of the distribution of initial residual stress inside the blank has significant meaning for machining deformation control.Due to the principle error of existing residual stress detection methods,there are still challenges in practical applications.Aiming at the detection problem of the initial residual stress field,an initial residual stress inference method by incorporating monitoring data and mechanism model is proposed in this paper.Monitoring data during machining process is used to represent the macroscopic characterization of the unbalanced residual stress,and the finite element numerical model is used as the mechanism model so as to solve the problem that the analytic mechanism model is difficult to establish;the policy gradient approach is introduced to solve the gradient descent problem of the combination of learning model and mechanism model.Finally,the initial residual stress field is obtained through iterative calculation based on the fusing method of monitoring data and mechanism model.Verification results show that the proposed inference method of initial residual stress field can accurately and effectively reflect the machining deformation in the actual machining process.展开更多
A three-dimensional finite element approach based on ABAQUS code was developed to investigate the effect of welding sequence on welding residual stress distribution in a thin-walled 6061 aluminum alloy structure. To o...A three-dimensional finite element approach based on ABAQUS code was developed to investigate the effect of welding sequence on welding residual stress distribution in a thin-walled 6061 aluminum alloy structure. To obtain sound numerical results, the therrno-mechanical behaviour was simulated using a direct-coupled formulation. Nine different simulation sequences were carried out by single-pass TIG welding of an octagonal pipe-plate joint, and the distributions of longitudinal and transverse residual stresses both on the outer and inner surfaces of the pipe were analyzed. The results suggest that the final residual stresses in the weld and its vicinity are not affected by the initial residual stresses of the structure. Selecting a suitable welding sequence can reduce the final residual stress in an octagonal pipe-plate joint.展开更多
The foundation of the ultrasonic non-destructive determination of stresses in near-the-surface layers of solids is presented. The method is based on the regularities of Rayleigh wave propagation in solids with initial...The foundation of the ultrasonic non-destructive determination of stresses in near-the-surface layers of solids is presented. The method is based on the regularities of Rayleigh wave propagation in solids with initial (residual) stresses. A description of the above mentioned method and examples of stress determination are presented. Examples are considered as applied to the residual stresses arising at electric welding and the operating stresses arising at loading.展开更多
High-precision manufactured thin-walled pure copper components are widely adopted in precision physics experiments,which require workpieces with extremely high machining accuracy.Double-sided lapping is an ultraprecis...High-precision manufactured thin-walled pure copper components are widely adopted in precision physics experiments,which require workpieces with extremely high machining accuracy.Double-sided lapping is an ultraprecision machining method for obtaining high-precision surfaces.However,during double-sided lapping,the residual stress of the components tends to cause deformation,which affects the machining accuracy of the workpiece.Therefore,a model to predict workpiece deformation derived from residual stress in actual manufacturing should be established.To improve the accuracy of the prediction model,a novel method for predicting workpiece deformation by amending the initial residual stress slightly based on the support vector regression(SVR)and genetic algorithm(GA)is proposed.Firstly,a finite element method model is established for double-sided lapping to understand the deformation process.Subsequently,the SVR model is utilized to construct the relationship between residual stress and deformation.Next,the GA is used to determine the best residual stress adjustment value based on the actual deformation of the workpiece.Finally,the method is validated via double-sided lapping experiments.展开更多
In the machining process of aircraft monolithic parts,the initial residual stress redistribution and structural stiffness evolution often lead to unexpected distortions.On the other hand,the stress redistribution and ...In the machining process of aircraft monolithic parts,the initial residual stress redistribution and structural stiffness evolution often lead to unexpected distortions.On the other hand,the stress redistribution and stiffness reduction during the machining process depend on the material removal sequence.The essence of the stress redistribution is releasing the initial elastic strain energy.In the present study,the influence of the material removal sequence on the energy release is studied.Moreover,a novel optimization method is proposed for the material removal sequence.In order to evaluate the performance of the proposed method,the mechanism of the machining distortion is firstly analyzed based on the energy principle.Then a calculative model for the machining distortion of long beam parts is established accordingly.Moreover,an energy parameter related to the bending distortion and the procedure of the material removal sequence optimization is defined.Finally,the bending distortion analysis and material removal sequence optimization are performed on a long beam with a Z-shaped cross-section.Furthermore,simulation and experiments are carried out.The obtained results indicate that the optimized sequence results in a low distortion fluctuation and decreases the bending distortion.展开更多
基金National Natural Science Foundation of China(Grant No.51775278)National Science Fund of China for Distinguished Young Scholars(Grant No.51925505).
文摘Initial residual stress is the main reason causing machining deformation of the workpiece,which has been deemed as one of the most important aspects of machining quality issues.The inference of the distribution of initial residual stress inside the blank has significant meaning for machining deformation control.Due to the principle error of existing residual stress detection methods,there are still challenges in practical applications.Aiming at the detection problem of the initial residual stress field,an initial residual stress inference method by incorporating monitoring data and mechanism model is proposed in this paper.Monitoring data during machining process is used to represent the macroscopic characterization of the unbalanced residual stress,and the finite element numerical model is used as the mechanism model so as to solve the problem that the analytic mechanism model is difficult to establish;the policy gradient approach is introduced to solve the gradient descent problem of the combination of learning model and mechanism model.Finally,the initial residual stress field is obtained through iterative calculation based on the fusing method of monitoring data and mechanism model.Verification results show that the proposed inference method of initial residual stress field can accurately and effectively reflect the machining deformation in the actual machining process.
基金Project(61075005)supported by the Fund of State Key Laboratory of Advanced Design and Manufacture for Vehicle Body in Hunan University,ChinaProject(09JJ1007)supported by Preeminent Youth Fund of Hunan Province,ChinaProject(51075132)supported by the National Natural Science Foundation of China
文摘A three-dimensional finite element approach based on ABAQUS code was developed to investigate the effect of welding sequence on welding residual stress distribution in a thin-walled 6061 aluminum alloy structure. To obtain sound numerical results, the therrno-mechanical behaviour was simulated using a direct-coupled formulation. Nine different simulation sequences were carried out by single-pass TIG welding of an octagonal pipe-plate joint, and the distributions of longitudinal and transverse residual stresses both on the outer and inner surfaces of the pipe were analyzed. The results suggest that the final residual stresses in the weld and its vicinity are not affected by the initial residual stresses of the structure. Selecting a suitable welding sequence can reduce the final residual stress in an octagonal pipe-plate joint.
文摘The foundation of the ultrasonic non-destructive determination of stresses in near-the-surface layers of solids is presented. The method is based on the regularities of Rayleigh wave propagation in solids with initial (residual) stresses. A description of the above mentioned method and examples of stress determination are presented. Examples are considered as applied to the residual stresses arising at electric welding and the operating stresses arising at loading.
基金the National Key Research and Development Program(Grant No.2018YFA0702900)the Science Challenge Project(Grant No.TZ2016006)the National Natural Science Foundation of China(Grant No.51975096).
文摘High-precision manufactured thin-walled pure copper components are widely adopted in precision physics experiments,which require workpieces with extremely high machining accuracy.Double-sided lapping is an ultraprecision machining method for obtaining high-precision surfaces.However,during double-sided lapping,the residual stress of the components tends to cause deformation,which affects the machining accuracy of the workpiece.Therefore,a model to predict workpiece deformation derived from residual stress in actual manufacturing should be established.To improve the accuracy of the prediction model,a novel method for predicting workpiece deformation by amending the initial residual stress slightly based on the support vector regression(SVR)and genetic algorithm(GA)is proposed.Firstly,a finite element method model is established for double-sided lapping to understand the deformation process.Subsequently,the SVR model is utilized to construct the relationship between residual stress and deformation.Next,the GA is used to determine the best residual stress adjustment value based on the actual deformation of the workpiece.Finally,the method is validated via double-sided lapping experiments.
基金the National Natural Science Foundation of China(No.51405226)。
文摘In the machining process of aircraft monolithic parts,the initial residual stress redistribution and structural stiffness evolution often lead to unexpected distortions.On the other hand,the stress redistribution and stiffness reduction during the machining process depend on the material removal sequence.The essence of the stress redistribution is releasing the initial elastic strain energy.In the present study,the influence of the material removal sequence on the energy release is studied.Moreover,a novel optimization method is proposed for the material removal sequence.In order to evaluate the performance of the proposed method,the mechanism of the machining distortion is firstly analyzed based on the energy principle.Then a calculative model for the machining distortion of long beam parts is established accordingly.Moreover,an energy parameter related to the bending distortion and the procedure of the material removal sequence optimization is defined.Finally,the bending distortion analysis and material removal sequence optimization are performed on a long beam with a Z-shaped cross-section.Furthermore,simulation and experiments are carried out.The obtained results indicate that the optimized sequence results in a low distortion fluctuation and decreases the bending distortion.