BACKGROUND: Severe acute pancreatitis (SAP) can result in intestinal mucosal injury. This study aimed to demonstrate the protective effect of clodronate-containing liposomes on intestinal mucosal injury in rats with S...BACKGROUND: Severe acute pancreatitis (SAP) can result in intestinal mucosal injury. This study aimed to demonstrate the protective effect of clodronate-containing liposomes on intestinal mucosal injury in rats with SAP. METHODS: Liposomes containing clodronate or phosphate buffered saline (PBS) were prepared by the thin-film method SAP models were prepared by a uniform injection of sodium taurocholate (2 mL/kg body weight) into the subcapsular space of the pancreas. Sprague-Dawley rats were randomly divided into a control group (C group), a SAP plus PBS-containing liposomes group (P group) and a SAP plus clodronate-containing liposomes group (T group). At 2 and 6 hours after the establishment of SAP models, 2 mL blood samples were taken from the superior mesenteric vein to measure the contents of serum TNF-α and IL-12. Pathological changes in the intestine and pancreas were observed using hematoxylin and eosin staining, while apoptosis was detected using TUNEL staining. In addition, the macrophage markers cluster of differentiation 68 (CD68) in the intestinal tissue was assessed with immunohistochemistry. RESULTS: At the two time points, the levels of TNF-α and IL-12 in the P group were higher than those in the C group (P<0.05) Compared with the P group, the levels of TNF-α and IL-12 decreased in the T group (P<0.05). The pathological scores of the intestinal mucosa and pancreas in the T group were lower than those of the P group. In the T group, large numbers of TUNEL-positive cells were observed, but none or few in the C and P groups. The number of CD68-positive macrophages decreased in the T group.CONCLUSIONS: Clodronate-containing liposomes have prote- ctive effects against intestinal mucosal injury in rats with SAP. The blockade of macrophages may provide a novel therapeutic strategy in SAP.展开更多
AIM: To evaluate the role of microcirculatory disorder (MCD) and the therapeutic effectiveness ;of tetramethylpyrazine (TMP) on intestinal mucosa injury in rats with acute necrotizing pancreatitis (ANP).METHODS...AIM: To evaluate the role of microcirculatory disorder (MCD) and the therapeutic effectiveness ;of tetramethylpyrazine (TMP) on intestinal mucosa injury in rats with acute necrotizing pancreatitis (ANP).METHODS: A total of 192 Sprague-Dawley rats were randomly divided into three groups: normal control group (C group), ANP group not treated with TMP (P group), ANP group treated with TMP (T group). An ANP model was induced by injection of 50 g/L sodium taurocholate under the pancreatic membrane (4 mL/kg). C group received isovolumetric injection of 9 g/L physiological saline solution using the same method. T group received injection of TMP (10 mL/kg) via portal vein. Radioactive biomicrosphere technique was used to measure the blood flow at 0.5, 2, 6 and 12 h after the induction of ANP. Samples of pancreas, distal ileum were collected to observe pathological changes using a validated histology score. Intestinal tissues were also used for examination of myeloperoxidase (MPO) expressed intraceUularly in azurophilic granules of neutrophils.RESULTS: The blood flow was significantly lower in P group than in C group (P 〈 0.01). The pathological changes were aggravated significantly in P group. The longer the time, the severer the pathological changes. The intestinal MPO activities were significantly higher in P group than in C group (P 〈 0.01). The blood flow of intestine was significantly higher in T group than in P group after 2 h (P 〈 0.01). The pathological changes were alleviated significantly in T group. MPO activities were significantly lower in T group than in P group (P 〈 0.01 or P 〈 0.05). There was a negative correlation between intestinal blood flow and MPO activity (r = -0.981, P 〈 0.01) as well as between intestinal blood flow and pathologic scores (r = -0.922, P 〈 0.05).CONCLUSION: MCD is an important factor for intestinal injury in ANP. TMP can ameliorate the condition of MCD and the damage to pancreas and intestine.展开更多
AIM: To study the protective effect of Astragalus rnernbranaceus on intestinal mucosa reperfusion injury and its mechanism after hemorrhagic shock in rats. METHODS: A total of 32 SD rats were randomly divided into f...AIM: To study the protective effect of Astragalus rnernbranaceus on intestinal mucosa reperfusion injury and its mechanism after hemorrhagic shock in rats. METHODS: A total of 32 SD rats were randomly divided into four groups (n = 8, each group): normal group, model group, low dosage group (treated with 10 g/kg Astragalus membranaceus) and high dosage group (treated with 20 g/kg Astragalus membranaceus). The model of hemorrhagic shock for 60 min and reperfusion for 90 min was established. Therapeutic solution (3 mL) was administrated before reperfusion. At the end of the study, the observed intestinal pathology was analyzed. The blood concentrations of lactic acid (LD), nitric oxide (NO), endothelin-1 (ET-1), malondialdehyde (MDA) and the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) in intestinal mucosa were determined. RESULTS: The intestinal mucosa pathology showed severe damage in model group and low dosage group, slight damage in high dosage group and no obvious damage in normal group. The Chiu's score in low dose group and high dose group was significantly lower than that in model group. The content of MDA in model group was higher than that in low and high dose groups, while that in high dose group was almost the same as in normal group. The activity of SOD and GSH-PX was the lowest in model group and significantly higher in high dose group than in normal and low dose groups. The concentrations of LD and ET-1 in model group were the highest. The concentrations of NO in model group and low dose group were significantly lower than those in high dose group and normal group. CONCLUSION: High dose Astraga/us membranaeus has much better protective effect on hemorrhagic shockreperfusion injury of intestinal mucosa than low dose Astragalus membranaceus. The mechanism may be that Astragalus membranaceus can improve antioxidative effect and regulate NO/ET level during hemorrhagic reperfusion.展开更多
Objective To observe the intestinal mucosal injury and the change of TNF-αcontent in rabbits with hemorrhagic shock/reperfusion(HS-R)and the effects of ganoderma Lcidum polysaccharide(GLP)on them.Methods 30rabbits we...Objective To observe the intestinal mucosal injury and the change of TNF-αcontent in rabbits with hemorrhagic shock/reperfusion(HS-R)and the effects of ganoderma Lcidum polysaccharide(GLP)on them.Methods 30rabbits were made into hemorrhagic shock,then reperfused with different liquids.These rabbits were divided by random number table into three groups:sham operation group(Sham group),reperfusion with normal saline group(NS group),reperfusion with 1%GLP group(LS group).Bacterial translocation of blood and TNF-αcontent in serum were respectively observed at the time before shock,40 min after shock,40 min and 90 min after.TNF-αcontent in intestinal mucosa and the degree of intestinal mucosal injury were examined at 90 min post-resuscitation.Results 1 With the extension of reperfusion time,the positive rate of blood bacteria increased gradually in NS group,which was significantly higher than that of Sham group and LS group(P<0.05),meanwhile the degree of intestinal mucosal injury in NS group was more severe than that of Sham group and LS group too(P<0.05).2TNF-αcontent in serum of NS group and LS group were increased obviously compared with that before shock and in Sham group(P<0.05).TNF-αcontent in serum was further increased after reperfusion with NS,which was distinctly higher than that in LS group.TNF-αcontent in intestinal mucosa of NS group was significantly higher than that in LS group and Sham group too(P<0.05).Conclusion GLP can protect intestinal mucosa against HS-R injury,and its effects may relate with the change of TNF-αin hemorrhagic shock rabbits.展开更多
BACKGROUND: Emodin, a traditional Chinese medicine, has a therapeutic effect on severe acute pancreatitis (SAP), whereas the underlying mechanism is still unclear. Studies showed that the intestinal mucosa impairment,...BACKGROUND: Emodin, a traditional Chinese medicine, has a therapeutic effect on severe acute pancreatitis (SAP), whereas the underlying mechanism is still unclear. Studies showed that the intestinal mucosa impairment, and subsequent release of endotoxin and proinflammatory cytokines such as IL-1 beta, which further leads to the dysfunction of multiple organs, is the potentially lethal mechanism of SAP. Caspase-1, an IL-1 beta converting enzyme, plays an important role in this cytokine cascade process. Investigation of the effect of emodin on regulating the caspase-1 expression and the release proinflammatory cytokines will help to reveal mechanism of emodin in treating SAP. METHODS: Eighty Sprague-Dawley rats were randomly divided into four groups (n=20 each group): SAP, sham-operated (SO), emodin-treated (EM) and caspase-1 inhibitor-treated (ICE-I) groups. SAP was induced by retrograde infusion of 3.5% sodium taurocholate into the pancreatic duct. Emodin and caspase-1 inhibitor were given 30 minutes before and 12 hours after SAP induction. Serum levels of IL-1 beta, IL-18 and endotoxin, histopathological alteration of pancreas tissues, intestinal mucosa, and the intestinal caspase-1 mRNA and protein expressions were assessed 24 hours after SAP induction. RESULTS: Rats in the SAP group had higher serum levels of IL-1 beta and IL-18 (P<0.05), pancreatic and gut pathological scores (P<0.05), and caspase-1 mRNA and protein expressions (P<0.05) compared with the SO group. Compared with the SAP group, rats in the EM and ICE-I groups had lower IL-1 beta and IL-18 levels (P<0.05), lower pancreatic and gut pathological scores (P<0.05), and decreased expression of intestine caspase-1 mRNA (P<0.05). Ultrastructural analysis by transmission electron microscopy found that rats in the SAP group had vaguer epithelial junctions, more disappeared intercellular joints, and more damaged intracellular organelles compared with those in the SO group or the EM and ICE-I groups. CONCLUSIONS: Emodin alleviated pancreatic and intestinal mucosa injury in experimental SAP. Its mechanism may partly be mediated by the inhibition of caspase-1 and its downstream inflammatory cytokines, including IL-1 beta and IL-18. Our animal data may be applicable in clinical practice.展开更多
Acute pancreatitis (AP) is a common acute abdomen in clinic with a rapid onset and dangerous pathogenetic condition. AP can cause an injury of intestinal mucosa barrier, leading to translocation of bacteria or endotox...Acute pancreatitis (AP) is a common acute abdomen in clinic with a rapid onset and dangerous pathogenetic condition. AP can cause an injury of intestinal mucosa barrier, leading to translocation of bacteria or endotoxin through multiple routes, bacterial translocation (BT), gutorigin endotoxaemia, and secondary infection of pancreatic tissue, and then cause systemic in- flammatory response syndrome (SIRS) or multiple organ dysfunction syndrome (MODS), which are important factors influencing AP’s severity and mortality. Meanwhile, the injury of intestinal mucosa barrier plays a key role in AP’s process. Therefore, it is clinically important to study the relationship between the injury of intestinal mucosa barrier and AP. In addition, many factors such as microcirculation disturbance, ischemical reperfusion injury, excessive release of inflammatory mediators and apoptosis may also play important roles in the damage of intestinal mucosa barrier. In this review, we summarize studies on mechanisms of AP.展开更多
Intestinal ischemia-reperfusion injury(IIRI)is a complex and severe pathophysiological process characterized by oxidative stress,inflammation,and apoptosis.In recent years,the critical roles of extracellular matrix(EC...Intestinal ischemia-reperfusion injury(IIRI)is a complex and severe pathophysiological process characterized by oxidative stress,inflammation,and apoptosis.In recent years,the critical roles of extracellular matrix(ECM)genes and microRNAs(miRNAs)in IIRI have garnered widespread attention.This review aims to systematically summarize the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI.First,we review the molecular mechanisms of IIRI,focusing on the dual role of the ECM in tissue injury and repair processes.The expression changes and functions of ECM components such as collagen,elastin,and matrix metalloproteinases during IIRI progression are deeply analyzed.Second,we systematically summarize the regulatory roles of miRNAs in IIRI,particularly the mechanisms and functions of miRNAs such as miR-125b and miR-200a in regulating inflammation,apoptosis,and ECM remodeling.Additionally,this review discusses potential diagnostic biomarkers and treatment strategies based on ECM genes and miRNAs.We extensively evaluate the prospects of miRNA-targeted therapy and ECM component modulation in preventing and treating IIRI,emphasizing the clinical translational potential of these emerging therapies.In conclusion,the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI provides new directions for further research,necessitating additional clinical and basic studies to validate and expand these findings for improving clinical outcomes in IIRI patients.展开更多
Background The aim of this experiment was to investigate the effect of different levels of betaine(Bet)inclusion in the diet on the intestinal health of growing rabbits under summer heat.A total of 100 weaned Qixing m...Background The aim of this experiment was to investigate the effect of different levels of betaine(Bet)inclusion in the diet on the intestinal health of growing rabbits under summer heat.A total of 100 weaned Qixing meat rabbits aged 35 d with body weight of 748.61±38.59 g were randomly divided into 5 treatment groups:control group(basal diet)and Bet groups(basal diet+0.75,1.0,1.5 or 2.0 g/kg Bet).The average daily temperature in the rabbitry during the experiment was 30.48°C and the relative humidity was 69.44%.Results Dietary addition of Bet had no significant effect on growth performance and health status of growing rabbits(P>0.05),but it increased ileal secretory immunoglobulin A content compared to the control under summer heat(P<0.05).Addition of 0.75 g/kg Bet up-regulated jejunal IL-4,down-regulated ileal TNF-αexpression(P<0.05).The addition of 1.0 g/kg Bet increased the villi height(VH)in the jejunum(P<0.05).Serum glucose levels were reduced,and the expression of SLC6A20 was up-regulated in jejunum and ileum of rabbits fed with 1.5 g/kg Bet(P<0.05).When added at 2.0 g/kg,Bet reduced serum HSP70 content,increased jejunal VH,and up-regulated duodenal SLC7A6,SLC38A2,mTOR and 4EBP-2 expression(P<0.05).Correlation analysis revealed that intestinal mTOR expression was significantly and positively correlated with SLC7A6,SLC38A2,SLC36A1 and IL-4 expression(P<0.05).Conclusions Dietary addition of Bet can up-regulate the expression of anti-inflammatory factors through the AAT/mTOR pathway,improve the intestinal immune function,alleviate intestinal damage in growing rabbits caused by summer heat,and improve intestinal health.展开更多
BACKGROUND Intestinal ischemia-reperfusion(I/R)injury(II/RI)is a critical condition that results in oxidative stress,inflammation,and damage to multiple organs.Zinc,an essential trace element,offers protective benefit...BACKGROUND Intestinal ischemia-reperfusion(I/R)injury(II/RI)is a critical condition that results in oxidative stress,inflammation,and damage to multiple organs.Zinc,an essential trace element,offers protective benefits in several tissues during I/R injury,but its effects on intestinal II/RI remain unclear.METHODS C57BL/6 mice were pretreated with zinc sulfate(ZnSO4,10 mg/kg)daily for three days before I/R injury was induced via superior mesenteric artery occlusion(SMAO)and abdominal aortic occlusion(AAO)models.Tissue and serum samples were collected to evaluate intestinal,liver,and kidney damage using Chiu’s score,Suzuki score,and histopathological analysis.Caco-2 cells and intestinal organoids were used for in vitro hypoxia-reoxygenation injury models to measure reactive oxygen species(ROS)and superoxide dismutase(SOD)levels.RESULTS Zinc pretreatment significantly reduced intestinal damage in the SMAO and AAO models(P<0.001).The serum levels of liver enzymes(alanine aminotransferase,aspartate aminotransferase)and kidney markers(creatinine and urea)were lower in the zinc-treated mice than in the control mice,indicating reduced hepatic and renal injury.In vitro,zinc decreased ROS levels and increased SOD activity in Caco-2 cells subject to hypoxia-reoxygenation injury.Intestinal organoids pretreated with zinc exhibited enhanced resilience to hypoxic injury compared to controls.CONCLUSION Zinc pretreatment mitigates II/RI and reduces associated multiorgan damage.These findings suggest that zinc has potential clinical applications in protecting against I/R injuries.展开更多
Objective To investigate the effects of Weikang Capsule(胃康胶囊,WKC)on aspirin-related gastric and small intestinal mucosal injury by magnetically controlled capsule endoscopy(MCCE).Methods Patients taking enteric-co...Objective To investigate the effects of Weikang Capsule(胃康胶囊,WKC)on aspirin-related gastric and small intestinal mucosal injury by magnetically controlled capsule endoscopy(MCCE).Methods Patients taking enteric-coated aspirin aged 40-75 years were enrolled in Beijing Anzhen Hospital,Capital Medical University from January 2019 to December 2019.The patients continued taking aspirin Tablet(100 mg per day)and underwent MCCE before and after 1-month combined treatment with WKC(0.9 g per time orally,3 times per day).The gastrointestinal symptom score,gastric Lanza score,the duodenal,jejunal and ileal mucosal injury scores were used to evaluate the gastrointestinal injury before and after treatment.Adverse events including nausea,vomiting,abdominal pain,abdominal distension,abdominal discomfort,dizziness,or headache during MCCE and combined treatment were observed and recorded.Results Twenty-two patients(male/female,13/9)taking enteric-coated aspirin aged 59.5±11.3 years with a duration of aspirin use of 28.0(1.0,48.0)months were recruited.Compared with pre-treatment,the gastrointestinal symptom rating scale scores,gastric Lanza scores,and duodenal mucosal injury scores were significantly reduced after 1-month WKC treatment(P<0.05),and jejunal and ileal mucosal injury scores showed no obvious change.No adverse events occurred during the trial.Conclusions WKC can alleviate gastrointestinal symptoms,as well as gastric and duodenal mucosal injuries,in patients taking enteric-coated aspirin;it does not aggravate jejunal or ileal mucosal injury,which may be an effective alternative for these patients(Clinical trial registry No.ChiCTR1900025451).展开更多
Objective:To evaluate the protective effect and mechanism of clemastine fumarate(CLE)on acute lung injury(ALI)in intestinal ischemia-reperfusion(I/R)mice.Methods:Twenty-four SPF Balb/c mice were randomly divided into ...Objective:To evaluate the protective effect and mechanism of clemastine fumarate(CLE)on acute lung injury(ALI)in intestinal ischemia-reperfusion(I/R)mice.Methods:Twenty-four SPF Balb/c mice were randomly divided into sham operation group(sham group),ischemia-reperfusion group(I/R group),and clemastine fumarate pretreatment group(I/R+C group).In the I/R group,an intestinal ischemia-reperfusion model was established(ischemia for 40 minutes,reperfusion for 2 hours).In the I/R+C group,CLE 5 mg/kg was intraperitoneally injected before the operation.Lung tissue morphology was observed and scored by HE staining;and the ratios of wet weight to dry weight(W/D)were recorded.the levels of MDA,SOD,GSH-px,NF-κB and TNF-αin lung tissue of each group were determined by ELISA;Western blot method was used to determine the expression of TLR4 protein in lung tissue.Results:Compared with the Sham group,the I/R group had significantly higher lung tissue injury score and wet/dry ratio(P<0.05),increased lung tissue MDA level(P<0.05),decreased SOD and GSH-px levels(P<0.05),and increased NF-κB and TNF-αlevels,the expression of TLR4 protein in lung tissue increased(P<0.05);compared with the I/R group,the lung tissue injury score and wet/dry ratio of the I/R+C group decreased(P<0.05),the level of MDA in lung tissue decreased(P<0.05),the levels of SOD and GSH-px increased(P<0.05),and the levels of NF-κB and TNF-毩decreased(P<0.05),the expression of TLR4 protein in lung tissue decreased(P<0.05).Conclusion:Clemastine fumarate can alleviate acute lung injury after intestinal ischemia-reperfusion in mice,and the mechanism may be related to the inhibition of oxidative stress and inflammatory response in lung tissue.展开更多
AIM: To investigate the effect of bone-marrow mesenchymal stem cells (BM MSCs) on the intestinal mucosa barrier in ischemia/reperfusion (I/R) injury. METHODS: BM MSCs were isolated from male Sprague-Dawley rats by den...AIM: To investigate the effect of bone-marrow mesenchymal stem cells (BM MSCs) on the intestinal mucosa barrier in ischemia/reperfusion (I/R) injury. METHODS: BM MSCs were isolated from male Sprague-Dawley rats by density gradient centrifugation, cultured, and analyzed by flow cytometry. I/R injury was induced by occlusion of the superior mesenteric artery for 30 min. Rats were treated with saline, BM MSCs (via intramucosal injection) or tumor necrosis factor (TNF)-α blocking antibodies (via the tail vein). I/R injury was assessed using transmission electron microscopy, hematoxylin and eosin (HE) staining, immunohistochemistry, western blotting and enzyme linked immunosorbent assay.RESULTS: Intestinal permeability increased, tight junctions (TJs) were disrupted, and zona occludens 1 (ZO-1) was downregulated after I/R injury. BM MSCs reduced intestinal mucosal barrier destruction, ZO-1 downregulation, and TJ disruption. The morphological abnormalities after intestinal I/R injury positively correlated with serum TNF-α levels. Administration of anti-TNF-α IgG or anti-TNF-α receptor 1 antibodies attenuated the intestinal ultrastructural changes, ZO-1 downregulation, and TJ disruption. CONCLUSION: Altered serum TNF-α levels play an important role in the ability of BM MSCs to protect against intestinal I/R injury.展开更多
AIM: To investigate the effect of Qingyi decoction onthe expression of secreted phospholipase A2(s PLA2) in intestinal barrier injury.METHODS: Fifty healthy Sprague-Dawley rats were randomly divided into control, seve...AIM: To investigate the effect of Qingyi decoction onthe expression of secreted phospholipase A2(s PLA2) in intestinal barrier injury.METHODS: Fifty healthy Sprague-Dawley rats were randomly divided into control, severe acute pancreatitis(SAP), Qingyi decoction-treated(QYT), dexamethasonetreated(DEX), and verapamil-treated(VER) groups. The SAP model was induced by retrograde infusion of 1.5% sodium deoxycholate into the biliopancreatic duct of the rats. All rats were sacrificed 24 h post-SAP induction. Arterial blood, intestine, and pancreas from each rat were harvested for investigations. The levels of serum amylase(AMY) and diamine oxidase(DAO) were determined using biochemical methods, and serum tumor necrosis factor(TNF)-α level was measured by an enzyme linked immunosorbent assay. Pathologic changes in the harvested tissues were investigated by microscopic examination of hematoxylin and eosinstained tissue sections. The expressions of s PLA2 at m RNA and protein levels were detected by reverse transcriptase PCR and Western blot, respectively. A terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling assay was used to investigate apoptosis of epithelial cells in the intestinal tissues. RESULTS: Compared to the control group, the expression of s PLA2 at both the m RNA and protein levels increased significantly in the SAP group(0.36 ± 0.13 vs 0.90 ± 0.38, and 0.16 ± 0.05 vs 0.64 ± 0.05, respectively; P s < 0.01). The levels of AMY, TNF-α and DAO in serum were also significantly increased(917 ± 62 U/L vs 6870 ± 810 U/L, 59.7 ± 14.3 ng/L vs 180.5 ± 20.1 ng/L, and 10.37 ± 2.44 U/L vs 37.89 ± 5.86 U/L, respectively; P s < 0.01). The apoptosis index of intestinal epithelial cells also differed significantly between the SAP and control rats(0.05 ± 0.02 vs 0.26 ± 0.06; P < 0.01). The serum levels of DAO and TNF-α, and the intestinal apoptosis index significantly correlated with s PLA2 expression in the intestine(r = 0.895, 0.893 and 0.926, respectively; Ps < 0.05). Thelevels of s PLA2, AMY, TNF-α, and DAO in the QYT, VER, and DEX groups were all decreased compared with the SAP group, but not the control group. Qingyi decoction intervention, however, gave the most therapeutic effect against intestinal barrier damage, although the onset of its therapeutic effect was slower. CONCLUSION: Qingyi decoction ameliorates acute pancreatitis-induced intestinal barrier injury by inhibiting the overexpression of intestinal s PLA2. This mechanism may be similar to that of verapamil.展开更多
This review updates the current views on aging gastric mucosa and the mechanisms of its increased susceptibility to injury. Experimental and clinical studies indicate that gastric mucosa of aging individuals-...This review updates the current views on aging gastric mucosa and the mechanisms of its increased susceptibility to injury. Experimental and clinical studies indicate that gastric mucosa of aging individuals-“aging gastropathy”-has prominent structural and functional abnormalities vs young gastric mucosa. Some of these abnormalities include a partial atrophy of gastric glands, impaired mucosal defense (reduced bicarbonate and prostaglandin generation, decreased sensory innervation), increased susceptibility to injury by a variety of damaging agents such as ethanol, aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs), impaired healing of injury and reduced therapeutic efficacy of ulcer-healing drugs. Detailed analysis of the above changes indicates that the following events occur in aging gastric mucosa: reduced mucosal blood flow and impaired oxygen delivery cause hypoxia, which leads to activation of the early growth response-1 (egr-1) transcription factor. Activation of egr-1, in turn, upregulates the dual specificity phosphatase, phosphatase and tensin homologue deleted on chromosome ten (PTEN) resulting in activation of pro-apoptotic caspase-3 and caspase-9 and reduced expression of the anti-apoptosis protein, survivin. The imbalance between pro- and anti-apoptosis mediators results in increased apoptosis and increased susceptibility to injury. This paradigm has human relevance since increased expression of PTEN and reduced expression of survivin were demonstrated in gastric mucosa of aging individuals. Other potential mechanisms operating in aging gastric mucosa include reduced telomerase activity, increase in replicative cellular senescence, and reduced expression of vascular endothelial growth factor and importin-α-a nuclear transport protein essential for transport of transcription factors to nucleus. Aging gastropathy is an important and clinically relevant issue because of: (1) an aging world population due to prolonged life span; (2) older patients have much greater risk of gastroduodenal ulcers and gastrointestinal complications (e.g., NSAIDs-induced gastric injury) than younger patients; and (3) increased susceptibility of aging gastric mucosa to injury can be potentially reduced or reversed pharmacologically.展开更多
IM To observe the kinetics of D()lactate alteration in both portal and systemic circulations, and its relationship with intestinal injury in rats subjected to acute intestinal ischemiareperfusion.METHODS Anesthetize...IM To observe the kinetics of D()lactate alteration in both portal and systemic circulations, and its relationship with intestinal injury in rats subjected to acute intestinal ischemiareperfusion.METHODS Anesthetized rats underwent 75min superior mesenteric artery occlusion followed by 6hour reperfusion. Plasma D()lactate levels were measured by an enzymatic spectrophotometric assay.RESULTS Intestinal ischemia for 75 min resulted in a significant elevation of D()lactate levels in portal vein as compared with the baseline values (P<005). Plasma D()lactate levels had a tendency to further increase after reperfusion up to 6 hours. Similar alterations in D()lactate were also found in systemic circulation, there were no significant differences between the portal and systemic circulations at any time point. Moreover, the macropathological evaluation scores were significantly correlated to the portal D()lactate levels in animals at various time points (r=0415, P<001). In addition,there was a remarkable rise of endotoxin concentration within the portal vein at the end of 75min ischemia (P<005), reaching a peak at 2 hours postreperfusion.CONCLUSION Acute intestinal ischemia is associated with failure of mucosal barrier resulting in increased plasma D()lactate levels in both portal and systemic blood. The subsequent reperfusion might further increase D()lactate levels, which are correlated to the macropathological alterations. Plasma D()lactate may be a useful marker of intestinal injury following both ischemia and reperfusion insults.展开更多
AIM: To investigate the role of intestinal mucosal blood flow (IMBF) and motility in the damage of intestinal mucosal barrier in rats with traumatic brain injury. METHODS: Sixty-four healthy male Wistar rats were ...AIM: To investigate the role of intestinal mucosal blood flow (IMBF) and motility in the damage of intestinal mucosal barrier in rats with traumatic brain injury. METHODS: Sixty-four healthy male Wistar rats were divided randomly into two groups: traumatic brain injury (TBI) group (n = 32), rats with traumatic brain injury; and control group (n = 32), rats with sham-operation. Each group was divided into four subgroups (n = 8) as 6, 12, 24 and 48 h after operation. Intestinal motility was measured by the propulsion ratio of a semi-solid colored marker (carbon-ink). IMBF was measured with the laser-Doppler technique. Endotoxin and D-xylose levels in plasma were measured to evaluate the change of intestinal mucosal barrier function following TBI. RESULTS: The level of endotoxin was significantly higher in TBI group than in the control group at each time point (0.382 ± 0.014 EU/mL vs 0.102 ± 0.007 EU/mL, 0.466 ± 0.018 EU/mL vs 0.114 ± 0.021 EU/mL, 0.478± 0.029 EU/mL vs 0.112 ±- 0.018 EU/mL and 0.412± 0.036 EU/mL vs 0.108 ±0.011 EU/mL, P 〈 0.05). D-xylose concentrations in plasma in TBI group were significantly higher than in the control group (6.68 ± 2.37 mmol/L vs 3.66 ±1.07 retool/L, 8.51 ± 2.69 mmol/L vs 3.15 + 0.95 mmol/L, 11.68 ±3.24 mmol/L vs 3.78 ± 1.12 mmol/L and 10.23 ± 2.83 mmol/L vs 3.34 ± 1.23 mmol/L, P 〈 0.05). The IMBF in TBI group was significantly lower than that in the control group (38.5 ± 2.8 PU vs 45.6 ± 4.6 PU, 25.2 ± 3.1 PU vs 48.2 ± 5.3 PU, 21.5 ± 2.7 PU vs 44.9 ± 2.8 PU, 29. 4 ± 3.8 PU vs 46.7 ± 3.2 PU) (P 〈 0.05). Significant decelerations of intestinal propulsion ratio in T8I groups were found compared with the control group (0.48% ± 0.06% vs 0.62%± 0.03%, 0.37% ±0.05% vs 0.64% ± 0.01%, 0.39% ± 0.07% vs 0.63% =1= 0.05% and 0.46% ± 0.03% vs 0.65% ± 0.02%) (P 〈 0.05). CONCLUSION: The intestinal mucosal permeability is increased obviously in TBI rats. Decrease of intestinal motility and IMBF occur early in TBI, both are important pathogenic factors for stress-related damage of the intestinal mucosal barrier in TBI.展开更多
BACKGROUND Acute pancreatitis(AP)is often associated with intestinal injury,which in turn exaggerates the progression of AP.Our recent study has shown that a low level of serum irisin,a novel exercise-induced hormone,...BACKGROUND Acute pancreatitis(AP)is often associated with intestinal injury,which in turn exaggerates the progression of AP.Our recent study has shown that a low level of serum irisin,a novel exercise-induced hormone,is associated with poor outcomes in patients with AP and irisin administration protects against experimental AP.However,the role of irisin in intestinal injury in AP has not been evaluated.AIM To investigate the effect of irisin administration on intestinal injury in experimental AP.METHODS AP was induced in male adult mice by two hourly intraperitoneal injections of Larginine.At 2 h after the last injection of L-arginine,irisin(50 or 250μg/kg body weight)or 1 mL normal saline(vehicle)was administered through intraperitoneal injection.The animals were sacrificed at 72 h after the induction of AP.Intestinal injury,apoptosis,oxidative and endoplasmic reticulum(ER)stress were evaluated.RESULTS Administration of irisin significantly mitigated intestinal damage,reduced apoptosis,and attenuated oxidative and ER stress in AP mice.In addition,irisin treatment also effectively downregulated serum tumor necrosis factor-alpha and interleukin-6 levels and alleviated injury in the pancreas,liver and lung of AP mice.CONCLUSION Irisin-mediated multiple physiological events attenuate intestinal injury following an episode of AP.Irisin has a great potential to be further developed as an effective treatment for patients with AP.展开更多
AIM: To investigate the effect of sulforaphane (SFN) on regulation of NF-E2-related factor-2 (Nrf2)-antiox-idant response element (ARE) pathway in liver injury induced by intestinal ischemia/reperfusion (I/R). METHODS...AIM: To investigate the effect of sulforaphane (SFN) on regulation of NF-E2-related factor-2 (Nrf2)-antiox-idant response element (ARE) pathway in liver injury induced by intestinal ischemia/reperfusion (I/R). METHODS: Rats were divided randomly into four ex-perimental groups: control, SFN control, intestinal I/R and SFN pretreatment groups (n = 8 in each group). The intestinal I/R model was established by clamping the superior mesenteric artery for 1 h and 2 h reperfu-sion. In the SFN pretreatment group, surgery was performed as in the intestinal I/R group, with intraperitoneal administration of 3 mg/kg SFN 1 h before the op-eration. Intestine and liver histology was investigated. Serum levels of aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured. Liver tissue superoxide dismutase (SOD), myeloperoxidase (MPO), glutathione (GSH) and glutathione peroxidase (GSH-Px) activity were assayed. The liver transcription factor Nrf2 and heme oxygenase-1 (HO-1) were determined by immunohistochemical analysis and Western blotting analysis.RESULTS: Intestinal I/R induced intestinal and liver injury, characterized by histological changes as well as a signif icant increase in serum AST and ALT levels (AST: 260.13 ± 40.17 U/L vs 186.00 ± 24.21 U/L, P < 0.01; ALT: 139.63 ± 11.35 U/L vs 48.38 ± 10.73 U/L, P < 0.01), all of which were reduced by pretreatment with SFN, respectively (AST: 260.13 ± 40.17 U/L vs 216.63 ± 22.65 U/L, P < 0.05; ALT: 139.63 ± 11.35 U/L vs 97.63 ± 15.56 U/L, P < 0.01). The activity of SOD in the liver tissue decreased after intestinal I/R (P < 0.01), which was enhanced by SFN pretreatment (P < 0.05). In ad-dition, compared with the control group, SFN markedly reduced liver tissue MPO activity (P < 0.05) and elevat-ed liver tissue GSH and GSH-Px activity (P < 0.05, P < 0.05), which was in parallel with the increased level of liver Nrf2 and HO-1 expression.CONCLUSION: SFN pretreatment attenuates liver injury induced by intestinal I/R in rats, attributable to the antioxidant effect through Nrf2-ARE pathway.展开更多
In this editorial we comment on the article by Fukushi K et al published in the recent issue of the World Journal of Gastroenterology 2018; 24(34): 3908-3918. We focus specifically on the mechanisms of the anti-thromb...In this editorial we comment on the article by Fukushi K et al published in the recent issue of the World Journal of Gastroenterology 2018; 24(34): 3908-3918. We focus specifically on the mechanisms of the anti-thrombotic action of aspirin, gastric mucosal injury and aging-related increased susceptibility of gastric mucosa to injury. Aspirin is widely used not only for the management of acute and chronic pain and arthritis, but also importantly for the primary and secondary prevention of cardiovascular events such as myocardial infarcts and strokes. Clinical trials have consistently shown that antiplatelet therapy with long term, low dose aspirin(LDA)-75 to 325 mg daily, dramatically reduces the risk of non-fatal myocardial infarcts, stroke and mortality in patients with established arterial diseases. However, such treatment considerably increases the risk of gastrointestinal(GI) ulcerations and serious bleeding by > 2-4 fold, especially in aging individuals. This risk is further increased in patients using LDA together with other antiplatelet agents, other nonsteroidal anti-inflammatory agents(NSAIDs) and/or alcohol, or in patients with Helicobacter pylori(H. pylori) infection. Previous studies by our group and others have demonstrated prominent structural and functional abnormalities in gastric mucosa of aging individuals(which we refer to as aging gastric mucosa or "aging gastropathy") compared to the gastric mucosa of younger individuals. Aging gastric mucosa has impaired mucosal defense, increased susceptibility to injury by a variety of noxious agents such as aspirin, other NSAIDs and ethanol, and delayed and impaired healing of injury. The mechanism underlying these abnormalities of aging gastric mucosa include reduced mucosal blood flowcausing hypoxia, upregulation of PTEN, activation of proapoptotic caspase-3 and caspase-9, and reduced survivin(anti-apoptosis protein), importin-α(nuclear transport protein), vascular endothelial growth factor, and nerve growth factor. The decision regarding initiation of a long-term LDA therapy should be made after a careful consideration of both cardiovascular and GI risk factors. The latter include a previous history of GI bleeding and/or ulcers, age ≥ 70, male gender, concurrent use of other NSAIDs, alcohol consumption and H. pylori infection. Furthermore, the incidence of GI ulcers and bleeding can be reduced in patients on long term LDA treatment by several measures. Clinicians treating such patients should test for and eradicate H. pylori, instruct patients to avoid alcohol and non-aspirin NSAIDs, including cyclooxygenase-2-selective NSAIDs, and prescribe proton pump inhibitors in patients on LDA therapy. In the future, clinicians may be able to prescribe one of several potential new drugs, which include aspirin associated with phosphatidylcholine(PL2200), which retains all property of aspirin but reduces by approximately 50% LDA-induced GI ulcerations.展开更多
AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric ar...AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric artery occlusion for 60 min and reperfusion for 240 min. One milliliter per day of FO emulsion or normal saline was administered by intraperitoneal injection for 5 consecutive days to each animal. Animals were sacrificed at the end of reperfusion. Blood andtissue samples were collected for analyses. AMPK, SIRT-1, and Beclin-1 expression was determined in lipopolysaccharide(LPS)-stimulated HepG2 cells with or without FO emulsion treatment.RESULTS Intestinal I/R induced significant liver morphological changes and increased serum alanine aminotransferase and aspartate aminotransferase levels. Expression of p-AMPK/AMPK, SIRT-1, and autophagy markers was decreased whereas tumor necrosis factor-α(TNF-α) and malonaldehyde(MDA) were increased. FO emulsion blocked the changes of the above indicators effectively. Besides, in LPS-stimulated HepG2 cells, small interfering RNA(siRNA) targeting AMPK impaired the FO induced increase of p-AMPK, SIRT-1, and Beclin-1 and decrease of TNF-α and MDA. SIRT-1 siRNA impaired the increase of SIRT-1 and Beclin-1 and the decrease of TNF-α and MDA.CONCLUSION Our study indicates that FO may protect the liver against intestinal I/R induced injury through the AMPK/SIRT-1/autophagy pathway.展开更多
基金supported by grants from the National Natural Science Foundation of China (81070287 and 30772117)the Graduate Research and Innovation Program of Jiangsu University (CX10B_010X)
文摘BACKGROUND: Severe acute pancreatitis (SAP) can result in intestinal mucosal injury. This study aimed to demonstrate the protective effect of clodronate-containing liposomes on intestinal mucosal injury in rats with SAP. METHODS: Liposomes containing clodronate or phosphate buffered saline (PBS) were prepared by the thin-film method SAP models were prepared by a uniform injection of sodium taurocholate (2 mL/kg body weight) into the subcapsular space of the pancreas. Sprague-Dawley rats were randomly divided into a control group (C group), a SAP plus PBS-containing liposomes group (P group) and a SAP plus clodronate-containing liposomes group (T group). At 2 and 6 hours after the establishment of SAP models, 2 mL blood samples were taken from the superior mesenteric vein to measure the contents of serum TNF-α and IL-12. Pathological changes in the intestine and pancreas were observed using hematoxylin and eosin staining, while apoptosis was detected using TUNEL staining. In addition, the macrophage markers cluster of differentiation 68 (CD68) in the intestinal tissue was assessed with immunohistochemistry. RESULTS: At the two time points, the levels of TNF-α and IL-12 in the P group were higher than those in the C group (P<0.05) Compared with the P group, the levels of TNF-α and IL-12 decreased in the T group (P<0.05). The pathological scores of the intestinal mucosa and pancreas in the T group were lower than those of the P group. In the T group, large numbers of TUNEL-positive cells were observed, but none or few in the C and P groups. The number of CD68-positive macrophages decreased in the T group.CONCLUSIONS: Clodronate-containing liposomes have prote- ctive effects against intestinal mucosal injury in rats with SAP. The blockade of macrophages may provide a novel therapeutic strategy in SAP.
基金Supported by Zhenjiang Science and Technology Committee, No. SH2002015
文摘AIM: To evaluate the role of microcirculatory disorder (MCD) and the therapeutic effectiveness ;of tetramethylpyrazine (TMP) on intestinal mucosa injury in rats with acute necrotizing pancreatitis (ANP).METHODS: A total of 192 Sprague-Dawley rats were randomly divided into three groups: normal control group (C group), ANP group not treated with TMP (P group), ANP group treated with TMP (T group). An ANP model was induced by injection of 50 g/L sodium taurocholate under the pancreatic membrane (4 mL/kg). C group received isovolumetric injection of 9 g/L physiological saline solution using the same method. T group received injection of TMP (10 mL/kg) via portal vein. Radioactive biomicrosphere technique was used to measure the blood flow at 0.5, 2, 6 and 12 h after the induction of ANP. Samples of pancreas, distal ileum were collected to observe pathological changes using a validated histology score. Intestinal tissues were also used for examination of myeloperoxidase (MPO) expressed intraceUularly in azurophilic granules of neutrophils.RESULTS: The blood flow was significantly lower in P group than in C group (P 〈 0.01). The pathological changes were aggravated significantly in P group. The longer the time, the severer the pathological changes. The intestinal MPO activities were significantly higher in P group than in C group (P 〈 0.01). The blood flow of intestine was significantly higher in T group than in P group after 2 h (P 〈 0.01). The pathological changes were alleviated significantly in T group. MPO activities were significantly lower in T group than in P group (P 〈 0.01 or P 〈 0.05). There was a negative correlation between intestinal blood flow and MPO activity (r = -0.981, P 〈 0.01) as well as between intestinal blood flow and pathologic scores (r = -0.922, P 〈 0.05).CONCLUSION: MCD is an important factor for intestinal injury in ANP. TMP can ameliorate the condition of MCD and the damage to pancreas and intestine.
基金Supported by the Chinese Traditional Medicine Foundation of Guangdong Province, China, No. 102061
文摘AIM: To study the protective effect of Astragalus rnernbranaceus on intestinal mucosa reperfusion injury and its mechanism after hemorrhagic shock in rats. METHODS: A total of 32 SD rats were randomly divided into four groups (n = 8, each group): normal group, model group, low dosage group (treated with 10 g/kg Astragalus membranaceus) and high dosage group (treated with 20 g/kg Astragalus membranaceus). The model of hemorrhagic shock for 60 min and reperfusion for 90 min was established. Therapeutic solution (3 mL) was administrated before reperfusion. At the end of the study, the observed intestinal pathology was analyzed. The blood concentrations of lactic acid (LD), nitric oxide (NO), endothelin-1 (ET-1), malondialdehyde (MDA) and the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) in intestinal mucosa were determined. RESULTS: The intestinal mucosa pathology showed severe damage in model group and low dosage group, slight damage in high dosage group and no obvious damage in normal group. The Chiu's score in low dose group and high dose group was significantly lower than that in model group. The content of MDA in model group was higher than that in low and high dose groups, while that in high dose group was almost the same as in normal group. The activity of SOD and GSH-PX was the lowest in model group and significantly higher in high dose group than in normal and low dose groups. The concentrations of LD and ET-1 in model group were the highest. The concentrations of NO in model group and low dose group were significantly lower than those in high dose group and normal group. CONCLUSION: High dose Astraga/us membranaeus has much better protective effect on hemorrhagic shockreperfusion injury of intestinal mucosa than low dose Astragalus membranaceus. The mechanism may be that Astragalus membranaceus can improve antioxidative effect and regulate NO/ET level during hemorrhagic reperfusion.
基金Natural Science Research Project of Henan Province Education Department(NO.2006310021)
文摘Objective To observe the intestinal mucosal injury and the change of TNF-αcontent in rabbits with hemorrhagic shock/reperfusion(HS-R)and the effects of ganoderma Lcidum polysaccharide(GLP)on them.Methods 30rabbits were made into hemorrhagic shock,then reperfused with different liquids.These rabbits were divided by random number table into three groups:sham operation group(Sham group),reperfusion with normal saline group(NS group),reperfusion with 1%GLP group(LS group).Bacterial translocation of blood and TNF-αcontent in serum were respectively observed at the time before shock,40 min after shock,40 min and 90 min after.TNF-αcontent in intestinal mucosa and the degree of intestinal mucosal injury were examined at 90 min post-resuscitation.Results 1 With the extension of reperfusion time,the positive rate of blood bacteria increased gradually in NS group,which was significantly higher than that of Sham group and LS group(P<0.05),meanwhile the degree of intestinal mucosal injury in NS group was more severe than that of Sham group and LS group too(P<0.05).2TNF-αcontent in serum of NS group and LS group were increased obviously compared with that before shock and in Sham group(P<0.05).TNF-αcontent in serum was further increased after reperfusion with NS,which was distinctly higher than that in LS group.TNF-αcontent in intestinal mucosa of NS group was significantly higher than that in LS group and Sham group too(P<0.05).Conclusion GLP can protect intestinal mucosa against HS-R injury,and its effects may relate with the change of TNF-αin hemorrhagic shock rabbits.
基金supported by grants from Zhejiang Province Traditional Chinese Medicine Scientific Research Fund(2011-ky1-001-164 and 2016ZB066)Public Welfare Projects of Ministry of Science of Zhejiang Province(20130101120016)
文摘BACKGROUND: Emodin, a traditional Chinese medicine, has a therapeutic effect on severe acute pancreatitis (SAP), whereas the underlying mechanism is still unclear. Studies showed that the intestinal mucosa impairment, and subsequent release of endotoxin and proinflammatory cytokines such as IL-1 beta, which further leads to the dysfunction of multiple organs, is the potentially lethal mechanism of SAP. Caspase-1, an IL-1 beta converting enzyme, plays an important role in this cytokine cascade process. Investigation of the effect of emodin on regulating the caspase-1 expression and the release proinflammatory cytokines will help to reveal mechanism of emodin in treating SAP. METHODS: Eighty Sprague-Dawley rats were randomly divided into four groups (n=20 each group): SAP, sham-operated (SO), emodin-treated (EM) and caspase-1 inhibitor-treated (ICE-I) groups. SAP was induced by retrograde infusion of 3.5% sodium taurocholate into the pancreatic duct. Emodin and caspase-1 inhibitor were given 30 minutes before and 12 hours after SAP induction. Serum levels of IL-1 beta, IL-18 and endotoxin, histopathological alteration of pancreas tissues, intestinal mucosa, and the intestinal caspase-1 mRNA and protein expressions were assessed 24 hours after SAP induction. RESULTS: Rats in the SAP group had higher serum levels of IL-1 beta and IL-18 (P<0.05), pancreatic and gut pathological scores (P<0.05), and caspase-1 mRNA and protein expressions (P<0.05) compared with the SO group. Compared with the SAP group, rats in the EM and ICE-I groups had lower IL-1 beta and IL-18 levels (P<0.05), lower pancreatic and gut pathological scores (P<0.05), and decreased expression of intestine caspase-1 mRNA (P<0.05). Ultrastructural analysis by transmission electron microscopy found that rats in the SAP group had vaguer epithelial junctions, more disappeared intercellular joints, and more damaged intracellular organelles compared with those in the SO group or the EM and ICE-I groups. CONCLUSIONS: Emodin alleviated pancreatic and intestinal mucosa injury in experimental SAP. Its mechanism may partly be mediated by the inhibition of caspase-1 and its downstream inflammatory cytokines, including IL-1 beta and IL-18. Our animal data may be applicable in clinical practice.
基金Project supported by the Traditional Chinese Medicine Science of Zhejiang Province (Nos. 2003C130 and 2004C142)the Medical Sci-ence and Technology of Zhejiang Province (No. 2003B134)the Technological Development of Hangzhou (No. 2003123B19), China
文摘Acute pancreatitis (AP) is a common acute abdomen in clinic with a rapid onset and dangerous pathogenetic condition. AP can cause an injury of intestinal mucosa barrier, leading to translocation of bacteria or endotoxin through multiple routes, bacterial translocation (BT), gutorigin endotoxaemia, and secondary infection of pancreatic tissue, and then cause systemic in- flammatory response syndrome (SIRS) or multiple organ dysfunction syndrome (MODS), which are important factors influencing AP’s severity and mortality. Meanwhile, the injury of intestinal mucosa barrier plays a key role in AP’s process. Therefore, it is clinically important to study the relationship between the injury of intestinal mucosa barrier and AP. In addition, many factors such as microcirculation disturbance, ischemical reperfusion injury, excessive release of inflammatory mediators and apoptosis may also play important roles in the damage of intestinal mucosa barrier. In this review, we summarize studies on mechanisms of AP.
基金Supported by Health Science and Technology Programme of Zhejiang Province,No.2022KY1391.
文摘Intestinal ischemia-reperfusion injury(IIRI)is a complex and severe pathophysiological process characterized by oxidative stress,inflammation,and apoptosis.In recent years,the critical roles of extracellular matrix(ECM)genes and microRNAs(miRNAs)in IIRI have garnered widespread attention.This review aims to systematically summarize the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI.First,we review the molecular mechanisms of IIRI,focusing on the dual role of the ECM in tissue injury and repair processes.The expression changes and functions of ECM components such as collagen,elastin,and matrix metalloproteinases during IIRI progression are deeply analyzed.Second,we systematically summarize the regulatory roles of miRNAs in IIRI,particularly the mechanisms and functions of miRNAs such as miR-125b and miR-200a in regulating inflammation,apoptosis,and ECM remodeling.Additionally,this review discusses potential diagnostic biomarkers and treatment strategies based on ECM genes and miRNAs.We extensively evaluate the prospects of miRNA-targeted therapy and ECM component modulation in preventing and treating IIRI,emphasizing the clinical translational potential of these emerging therapies.In conclusion,the diagnostic and therapeutic potential of ECM gene sets and miRNA regulatory networks in IIRI provides new directions for further research,necessitating additional clinical and basic studies to validate and expand these findings for improving clinical outcomes in IIRI patients.
文摘Background The aim of this experiment was to investigate the effect of different levels of betaine(Bet)inclusion in the diet on the intestinal health of growing rabbits under summer heat.A total of 100 weaned Qixing meat rabbits aged 35 d with body weight of 748.61±38.59 g were randomly divided into 5 treatment groups:control group(basal diet)and Bet groups(basal diet+0.75,1.0,1.5 or 2.0 g/kg Bet).The average daily temperature in the rabbitry during the experiment was 30.48°C and the relative humidity was 69.44%.Results Dietary addition of Bet had no significant effect on growth performance and health status of growing rabbits(P>0.05),but it increased ileal secretory immunoglobulin A content compared to the control under summer heat(P<0.05).Addition of 0.75 g/kg Bet up-regulated jejunal IL-4,down-regulated ileal TNF-αexpression(P<0.05).The addition of 1.0 g/kg Bet increased the villi height(VH)in the jejunum(P<0.05).Serum glucose levels were reduced,and the expression of SLC6A20 was up-regulated in jejunum and ileum of rabbits fed with 1.5 g/kg Bet(P<0.05).When added at 2.0 g/kg,Bet reduced serum HSP70 content,increased jejunal VH,and up-regulated duodenal SLC7A6,SLC38A2,mTOR and 4EBP-2 expression(P<0.05).Correlation analysis revealed that intestinal mTOR expression was significantly and positively correlated with SLC7A6,SLC38A2,SLC36A1 and IL-4 expression(P<0.05).Conclusions Dietary addition of Bet can up-regulate the expression of anti-inflammatory factors through the AAT/mTOR pathway,improve the intestinal immune function,alleviate intestinal damage in growing rabbits caused by summer heat,and improve intestinal health.
文摘BACKGROUND Intestinal ischemia-reperfusion(I/R)injury(II/RI)is a critical condition that results in oxidative stress,inflammation,and damage to multiple organs.Zinc,an essential trace element,offers protective benefits in several tissues during I/R injury,but its effects on intestinal II/RI remain unclear.METHODS C57BL/6 mice were pretreated with zinc sulfate(ZnSO4,10 mg/kg)daily for three days before I/R injury was induced via superior mesenteric artery occlusion(SMAO)and abdominal aortic occlusion(AAO)models.Tissue and serum samples were collected to evaluate intestinal,liver,and kidney damage using Chiu’s score,Suzuki score,and histopathological analysis.Caco-2 cells and intestinal organoids were used for in vitro hypoxia-reoxygenation injury models to measure reactive oxygen species(ROS)and superoxide dismutase(SOD)levels.RESULTS Zinc pretreatment significantly reduced intestinal damage in the SMAO and AAO models(P<0.001).The serum levels of liver enzymes(alanine aminotransferase,aspartate aminotransferase)and kidney markers(creatinine and urea)were lower in the zinc-treated mice than in the control mice,indicating reduced hepatic and renal injury.In vitro,zinc decreased ROS levels and increased SOD activity in Caco-2 cells subject to hypoxia-reoxygenation injury.Intestinal organoids pretreated with zinc exhibited enhanced resilience to hypoxic injury compared to controls.CONCLUSION Zinc pretreatment mitigates II/RI and reduces associated multiorgan damage.These findings suggest that zinc has potential clinical applications in protecting against I/R injuries.
基金Supported by Beijing Chinese Medicine Science and Technology Development Fund(No.JJ2018-02)。
文摘Objective To investigate the effects of Weikang Capsule(胃康胶囊,WKC)on aspirin-related gastric and small intestinal mucosal injury by magnetically controlled capsule endoscopy(MCCE).Methods Patients taking enteric-coated aspirin aged 40-75 years were enrolled in Beijing Anzhen Hospital,Capital Medical University from January 2019 to December 2019.The patients continued taking aspirin Tablet(100 mg per day)and underwent MCCE before and after 1-month combined treatment with WKC(0.9 g per time orally,3 times per day).The gastrointestinal symptom score,gastric Lanza score,the duodenal,jejunal and ileal mucosal injury scores were used to evaluate the gastrointestinal injury before and after treatment.Adverse events including nausea,vomiting,abdominal pain,abdominal distension,abdominal discomfort,dizziness,or headache during MCCE and combined treatment were observed and recorded.Results Twenty-two patients(male/female,13/9)taking enteric-coated aspirin aged 59.5±11.3 years with a duration of aspirin use of 28.0(1.0,48.0)months were recruited.Compared with pre-treatment,the gastrointestinal symptom rating scale scores,gastric Lanza scores,and duodenal mucosal injury scores were significantly reduced after 1-month WKC treatment(P<0.05),and jejunal and ileal mucosal injury scores showed no obvious change.No adverse events occurred during the trial.Conclusions WKC can alleviate gastrointestinal symptoms,as well as gastric and duodenal mucosal injuries,in patients taking enteric-coated aspirin;it does not aggravate jejunal or ileal mucosal injury,which may be an effective alternative for these patients(Clinical trial registry No.ChiCTR1900025451).
基金This study was supported by Natural Science Foundation of Gansu Province(No.20JR10RA727)。
文摘Objective:To evaluate the protective effect and mechanism of clemastine fumarate(CLE)on acute lung injury(ALI)in intestinal ischemia-reperfusion(I/R)mice.Methods:Twenty-four SPF Balb/c mice were randomly divided into sham operation group(sham group),ischemia-reperfusion group(I/R group),and clemastine fumarate pretreatment group(I/R+C group).In the I/R group,an intestinal ischemia-reperfusion model was established(ischemia for 40 minutes,reperfusion for 2 hours).In the I/R+C group,CLE 5 mg/kg was intraperitoneally injected before the operation.Lung tissue morphology was observed and scored by HE staining;and the ratios of wet weight to dry weight(W/D)were recorded.the levels of MDA,SOD,GSH-px,NF-κB and TNF-αin lung tissue of each group were determined by ELISA;Western blot method was used to determine the expression of TLR4 protein in lung tissue.Results:Compared with the Sham group,the I/R group had significantly higher lung tissue injury score and wet/dry ratio(P<0.05),increased lung tissue MDA level(P<0.05),decreased SOD and GSH-px levels(P<0.05),and increased NF-κB and TNF-αlevels,the expression of TLR4 protein in lung tissue increased(P<0.05);compared with the I/R group,the lung tissue injury score and wet/dry ratio of the I/R+C group decreased(P<0.05),the level of MDA in lung tissue decreased(P<0.05),the levels of SOD and GSH-px increased(P<0.05),and the levels of NF-κB and TNF-毩decreased(P<0.05),the expression of TLR4 protein in lung tissue decreased(P<0.05).Conclusion:Clemastine fumarate can alleviate acute lung injury after intestinal ischemia-reperfusion in mice,and the mechanism may be related to the inhibition of oxidative stress and inflammatory response in lung tissue.
基金Supported by Natural Science Foundation of China, No.81270528the Natural Science Foundation of Tianjin, No. 08JCYBJC08400, No. 11JCZDJC27800 and No. 12JCZDJC25200the Technology Foundation of Health Bureau in Tianjin, No.2011KY11
文摘AIM: To investigate the effect of bone-marrow mesenchymal stem cells (BM MSCs) on the intestinal mucosa barrier in ischemia/reperfusion (I/R) injury. METHODS: BM MSCs were isolated from male Sprague-Dawley rats by density gradient centrifugation, cultured, and analyzed by flow cytometry. I/R injury was induced by occlusion of the superior mesenteric artery for 30 min. Rats were treated with saline, BM MSCs (via intramucosal injection) or tumor necrosis factor (TNF)-α blocking antibodies (via the tail vein). I/R injury was assessed using transmission electron microscopy, hematoxylin and eosin (HE) staining, immunohistochemistry, western blotting and enzyme linked immunosorbent assay.RESULTS: Intestinal permeability increased, tight junctions (TJs) were disrupted, and zona occludens 1 (ZO-1) was downregulated after I/R injury. BM MSCs reduced intestinal mucosal barrier destruction, ZO-1 downregulation, and TJ disruption. The morphological abnormalities after intestinal I/R injury positively correlated with serum TNF-α levels. Administration of anti-TNF-α IgG or anti-TNF-α receptor 1 antibodies attenuated the intestinal ultrastructural changes, ZO-1 downregulation, and TJ disruption. CONCLUSION: Altered serum TNF-α levels play an important role in the ability of BM MSCs to protect against intestinal I/R injury.
基金Supported by National Natural Science Foundation of China,No.81173452
文摘AIM: To investigate the effect of Qingyi decoction onthe expression of secreted phospholipase A2(s PLA2) in intestinal barrier injury.METHODS: Fifty healthy Sprague-Dawley rats were randomly divided into control, severe acute pancreatitis(SAP), Qingyi decoction-treated(QYT), dexamethasonetreated(DEX), and verapamil-treated(VER) groups. The SAP model was induced by retrograde infusion of 1.5% sodium deoxycholate into the biliopancreatic duct of the rats. All rats were sacrificed 24 h post-SAP induction. Arterial blood, intestine, and pancreas from each rat were harvested for investigations. The levels of serum amylase(AMY) and diamine oxidase(DAO) were determined using biochemical methods, and serum tumor necrosis factor(TNF)-α level was measured by an enzyme linked immunosorbent assay. Pathologic changes in the harvested tissues were investigated by microscopic examination of hematoxylin and eosinstained tissue sections. The expressions of s PLA2 at m RNA and protein levels were detected by reverse transcriptase PCR and Western blot, respectively. A terminal deoxynucleotidyl transferase-mediated d UTP nick-end labeling assay was used to investigate apoptosis of epithelial cells in the intestinal tissues. RESULTS: Compared to the control group, the expression of s PLA2 at both the m RNA and protein levels increased significantly in the SAP group(0.36 ± 0.13 vs 0.90 ± 0.38, and 0.16 ± 0.05 vs 0.64 ± 0.05, respectively; P s < 0.01). The levels of AMY, TNF-α and DAO in serum were also significantly increased(917 ± 62 U/L vs 6870 ± 810 U/L, 59.7 ± 14.3 ng/L vs 180.5 ± 20.1 ng/L, and 10.37 ± 2.44 U/L vs 37.89 ± 5.86 U/L, respectively; P s < 0.01). The apoptosis index of intestinal epithelial cells also differed significantly between the SAP and control rats(0.05 ± 0.02 vs 0.26 ± 0.06; P < 0.01). The serum levels of DAO and TNF-α, and the intestinal apoptosis index significantly correlated with s PLA2 expression in the intestine(r = 0.895, 0.893 and 0.926, respectively; Ps < 0.05). Thelevels of s PLA2, AMY, TNF-α, and DAO in the QYT, VER, and DEX groups were all decreased compared with the SAP group, but not the control group. Qingyi decoction intervention, however, gave the most therapeutic effect against intestinal barrier damage, although the onset of its therapeutic effect was slower. CONCLUSION: Qingyi decoction ameliorates acute pancreatitis-induced intestinal barrier injury by inhibiting the overexpression of intestinal s PLA2. This mechanism may be similar to that of verapamil.
基金Supported by VA Merit Review grant to Tarnawski AS
文摘This review updates the current views on aging gastric mucosa and the mechanisms of its increased susceptibility to injury. Experimental and clinical studies indicate that gastric mucosa of aging individuals-“aging gastropathy”-has prominent structural and functional abnormalities vs young gastric mucosa. Some of these abnormalities include a partial atrophy of gastric glands, impaired mucosal defense (reduced bicarbonate and prostaglandin generation, decreased sensory innervation), increased susceptibility to injury by a variety of damaging agents such as ethanol, aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs), impaired healing of injury and reduced therapeutic efficacy of ulcer-healing drugs. Detailed analysis of the above changes indicates that the following events occur in aging gastric mucosa: reduced mucosal blood flow and impaired oxygen delivery cause hypoxia, which leads to activation of the early growth response-1 (egr-1) transcription factor. Activation of egr-1, in turn, upregulates the dual specificity phosphatase, phosphatase and tensin homologue deleted on chromosome ten (PTEN) resulting in activation of pro-apoptotic caspase-3 and caspase-9 and reduced expression of the anti-apoptosis protein, survivin. The imbalance between pro- and anti-apoptosis mediators results in increased apoptosis and increased susceptibility to injury. This paradigm has human relevance since increased expression of PTEN and reduced expression of survivin were demonstrated in gastric mucosa of aging individuals. Other potential mechanisms operating in aging gastric mucosa include reduced telomerase activity, increase in replicative cellular senescence, and reduced expression of vascular endothelial growth factor and importin-α-a nuclear transport protein essential for transport of transcription factors to nucleus. Aging gastropathy is an important and clinically relevant issue because of: (1) an aging world population due to prolonged life span; (2) older patients have much greater risk of gastroduodenal ulcers and gastrointestinal complications (e.g., NSAIDs-induced gastric injury) than younger patients; and (3) increased susceptibility of aging gastric mucosa to injury can be potentially reduced or reversed pharmacologically.
文摘IM To observe the kinetics of D()lactate alteration in both portal and systemic circulations, and its relationship with intestinal injury in rats subjected to acute intestinal ischemiareperfusion.METHODS Anesthetized rats underwent 75min superior mesenteric artery occlusion followed by 6hour reperfusion. Plasma D()lactate levels were measured by an enzymatic spectrophotometric assay.RESULTS Intestinal ischemia for 75 min resulted in a significant elevation of D()lactate levels in portal vein as compared with the baseline values (P<005). Plasma D()lactate levels had a tendency to further increase after reperfusion up to 6 hours. Similar alterations in D()lactate were also found in systemic circulation, there were no significant differences between the portal and systemic circulations at any time point. Moreover, the macropathological evaluation scores were significantly correlated to the portal D()lactate levels in animals at various time points (r=0415, P<001). In addition,there was a remarkable rise of endotoxin concentration within the portal vein at the end of 75min ischemia (P<005), reaching a peak at 2 hours postreperfusion.CONCLUSION Acute intestinal ischemia is associated with failure of mucosal barrier resulting in increased plasma D()lactate levels in both portal and systemic blood. The subsequent reperfusion might further increase D()lactate levels, which are correlated to the macropathological alterations. Plasma D()lactate may be a useful marker of intestinal injury following both ischemia and reperfusion insults.
文摘AIM: To investigate the role of intestinal mucosal blood flow (IMBF) and motility in the damage of intestinal mucosal barrier in rats with traumatic brain injury. METHODS: Sixty-four healthy male Wistar rats were divided randomly into two groups: traumatic brain injury (TBI) group (n = 32), rats with traumatic brain injury; and control group (n = 32), rats with sham-operation. Each group was divided into four subgroups (n = 8) as 6, 12, 24 and 48 h after operation. Intestinal motility was measured by the propulsion ratio of a semi-solid colored marker (carbon-ink). IMBF was measured with the laser-Doppler technique. Endotoxin and D-xylose levels in plasma were measured to evaluate the change of intestinal mucosal barrier function following TBI. RESULTS: The level of endotoxin was significantly higher in TBI group than in the control group at each time point (0.382 ± 0.014 EU/mL vs 0.102 ± 0.007 EU/mL, 0.466 ± 0.018 EU/mL vs 0.114 ± 0.021 EU/mL, 0.478± 0.029 EU/mL vs 0.112 ±- 0.018 EU/mL and 0.412± 0.036 EU/mL vs 0.108 ±0.011 EU/mL, P 〈 0.05). D-xylose concentrations in plasma in TBI group were significantly higher than in the control group (6.68 ± 2.37 mmol/L vs 3.66 ±1.07 retool/L, 8.51 ± 2.69 mmol/L vs 3.15 + 0.95 mmol/L, 11.68 ±3.24 mmol/L vs 3.78 ± 1.12 mmol/L and 10.23 ± 2.83 mmol/L vs 3.34 ± 1.23 mmol/L, P 〈 0.05). The IMBF in TBI group was significantly lower than that in the control group (38.5 ± 2.8 PU vs 45.6 ± 4.6 PU, 25.2 ± 3.1 PU vs 48.2 ± 5.3 PU, 21.5 ± 2.7 PU vs 44.9 ± 2.8 PU, 29. 4 ± 3.8 PU vs 46.7 ± 3.2 PU) (P 〈 0.05). Significant decelerations of intestinal propulsion ratio in T8I groups were found compared with the control group (0.48% ± 0.06% vs 0.62%± 0.03%, 0.37% ±0.05% vs 0.64% ± 0.01%, 0.39% ± 0.07% vs 0.63% =1= 0.05% and 0.46% ± 0.03% vs 0.65% ± 0.02%) (P 〈 0.05). CONCLUSION: The intestinal mucosal permeability is increased obviously in TBI rats. Decrease of intestinal motility and IMBF occur early in TBI, both are important pathogenic factors for stress-related damage of the intestinal mucosal barrier in TBI.
基金Supported by the National Natural Science Foundation of China,No.81770491
文摘BACKGROUND Acute pancreatitis(AP)is often associated with intestinal injury,which in turn exaggerates the progression of AP.Our recent study has shown that a low level of serum irisin,a novel exercise-induced hormone,is associated with poor outcomes in patients with AP and irisin administration protects against experimental AP.However,the role of irisin in intestinal injury in AP has not been evaluated.AIM To investigate the effect of irisin administration on intestinal injury in experimental AP.METHODS AP was induced in male adult mice by two hourly intraperitoneal injections of Larginine.At 2 h after the last injection of L-arginine,irisin(50 or 250μg/kg body weight)or 1 mL normal saline(vehicle)was administered through intraperitoneal injection.The animals were sacrificed at 72 h after the induction of AP.Intestinal injury,apoptosis,oxidative and endoplasmic reticulum(ER)stress were evaluated.RESULTS Administration of irisin significantly mitigated intestinal damage,reduced apoptosis,and attenuated oxidative and ER stress in AP mice.In addition,irisin treatment also effectively downregulated serum tumor necrosis factor-alpha and interleukin-6 levels and alleviated injury in the pancreas,liver and lung of AP mice.CONCLUSION Irisin-mediated multiple physiological events attenuate intestinal injury following an episode of AP.Irisin has a great potential to be further developed as an effective treatment for patients with AP.
基金Supported by The grants of Chinese National Natural Science Foundation, No. 30872449the grants of the Dalian Scientific Research Foundation, No. 2008E13SF217
文摘AIM: To investigate the effect of sulforaphane (SFN) on regulation of NF-E2-related factor-2 (Nrf2)-antiox-idant response element (ARE) pathway in liver injury induced by intestinal ischemia/reperfusion (I/R). METHODS: Rats were divided randomly into four ex-perimental groups: control, SFN control, intestinal I/R and SFN pretreatment groups (n = 8 in each group). The intestinal I/R model was established by clamping the superior mesenteric artery for 1 h and 2 h reperfu-sion. In the SFN pretreatment group, surgery was performed as in the intestinal I/R group, with intraperitoneal administration of 3 mg/kg SFN 1 h before the op-eration. Intestine and liver histology was investigated. Serum levels of aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured. Liver tissue superoxide dismutase (SOD), myeloperoxidase (MPO), glutathione (GSH) and glutathione peroxidase (GSH-Px) activity were assayed. The liver transcription factor Nrf2 and heme oxygenase-1 (HO-1) were determined by immunohistochemical analysis and Western blotting analysis.RESULTS: Intestinal I/R induced intestinal and liver injury, characterized by histological changes as well as a signif icant increase in serum AST and ALT levels (AST: 260.13 ± 40.17 U/L vs 186.00 ± 24.21 U/L, P < 0.01; ALT: 139.63 ± 11.35 U/L vs 48.38 ± 10.73 U/L, P < 0.01), all of which were reduced by pretreatment with SFN, respectively (AST: 260.13 ± 40.17 U/L vs 216.63 ± 22.65 U/L, P < 0.05; ALT: 139.63 ± 11.35 U/L vs 97.63 ± 15.56 U/L, P < 0.01). The activity of SOD in the liver tissue decreased after intestinal I/R (P < 0.01), which was enhanced by SFN pretreatment (P < 0.05). In ad-dition, compared with the control group, SFN markedly reduced liver tissue MPO activity (P < 0.05) and elevat-ed liver tissue GSH and GSH-Px activity (P < 0.05, P < 0.05), which was in parallel with the increased level of liver Nrf2 and HO-1 expression.CONCLUSION: SFN pretreatment attenuates liver injury induced by intestinal I/R in rats, attributable to the antioxidant effect through Nrf2-ARE pathway.
基金Merit Review Award from the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service,No.I01 BX000626-05A2 to Tarnawski AS
文摘In this editorial we comment on the article by Fukushi K et al published in the recent issue of the World Journal of Gastroenterology 2018; 24(34): 3908-3918. We focus specifically on the mechanisms of the anti-thrombotic action of aspirin, gastric mucosal injury and aging-related increased susceptibility of gastric mucosa to injury. Aspirin is widely used not only for the management of acute and chronic pain and arthritis, but also importantly for the primary and secondary prevention of cardiovascular events such as myocardial infarcts and strokes. Clinical trials have consistently shown that antiplatelet therapy with long term, low dose aspirin(LDA)-75 to 325 mg daily, dramatically reduces the risk of non-fatal myocardial infarcts, stroke and mortality in patients with established arterial diseases. However, such treatment considerably increases the risk of gastrointestinal(GI) ulcerations and serious bleeding by > 2-4 fold, especially in aging individuals. This risk is further increased in patients using LDA together with other antiplatelet agents, other nonsteroidal anti-inflammatory agents(NSAIDs) and/or alcohol, or in patients with Helicobacter pylori(H. pylori) infection. Previous studies by our group and others have demonstrated prominent structural and functional abnormalities in gastric mucosa of aging individuals(which we refer to as aging gastric mucosa or "aging gastropathy") compared to the gastric mucosa of younger individuals. Aging gastric mucosa has impaired mucosal defense, increased susceptibility to injury by a variety of noxious agents such as aspirin, other NSAIDs and ethanol, and delayed and impaired healing of injury. The mechanism underlying these abnormalities of aging gastric mucosa include reduced mucosal blood flowcausing hypoxia, upregulation of PTEN, activation of proapoptotic caspase-3 and caspase-9, and reduced survivin(anti-apoptosis protein), importin-α(nuclear transport protein), vascular endothelial growth factor, and nerve growth factor. The decision regarding initiation of a long-term LDA therapy should be made after a careful consideration of both cardiovascular and GI risk factors. The latter include a previous history of GI bleeding and/or ulcers, age ≥ 70, male gender, concurrent use of other NSAIDs, alcohol consumption and H. pylori infection. Furthermore, the incidence of GI ulcers and bleeding can be reduced in patients on long term LDA treatment by several measures. Clinicians treating such patients should test for and eradicate H. pylori, instruct patients to avoid alcohol and non-aspirin NSAIDs, including cyclooxygenase-2-selective NSAIDs, and prescribe proton pump inhibitors in patients on LDA therapy. In the future, clinicians may be able to prescribe one of several potential new drugs, which include aspirin associated with phosphatidylcholine(PL2200), which retains all property of aspirin but reduces by approximately 50% LDA-induced GI ulcerations.
基金Supported by the National Natural Science Foundation of China,No.81600446Natural Science Foundation of Liaoning Province,China,No.201102048Natural Science Foundation of Dalian Medical Association,No.w SJ/KJC-01-JL-01
文摘AIM To evaluate whether fish oil(FO) can protect liver injury induced by intestinal ischemia/reperfusion(I/R) via the AMPK/SIRT-1/autophagy pathway.METHODS Ischemia in wistar rats was induced by superior mesenteric artery occlusion for 60 min and reperfusion for 240 min. One milliliter per day of FO emulsion or normal saline was administered by intraperitoneal injection for 5 consecutive days to each animal. Animals were sacrificed at the end of reperfusion. Blood andtissue samples were collected for analyses. AMPK, SIRT-1, and Beclin-1 expression was determined in lipopolysaccharide(LPS)-stimulated HepG2 cells with or without FO emulsion treatment.RESULTS Intestinal I/R induced significant liver morphological changes and increased serum alanine aminotransferase and aspartate aminotransferase levels. Expression of p-AMPK/AMPK, SIRT-1, and autophagy markers was decreased whereas tumor necrosis factor-α(TNF-α) and malonaldehyde(MDA) were increased. FO emulsion blocked the changes of the above indicators effectively. Besides, in LPS-stimulated HepG2 cells, small interfering RNA(siRNA) targeting AMPK impaired the FO induced increase of p-AMPK, SIRT-1, and Beclin-1 and decrease of TNF-α and MDA. SIRT-1 siRNA impaired the increase of SIRT-1 and Beclin-1 and the decrease of TNF-α and MDA.CONCLUSION Our study indicates that FO may protect the liver against intestinal I/R induced injury through the AMPK/SIRT-1/autophagy pathway.