In the process of performance prediction of waterjet system,the flow loss of inlet duct is usually reckoned by the rule of thumb. But its value is often overestimated to some extent,resulting in error of prediction ac...In the process of performance prediction of waterjet system,the flow loss of inlet duct is usually reckoned by the rule of thumb. But its value is often overestimated to some extent,resulting in error of prediction accuracy. This paper introduces a new method to determine the flow loss by means of computational fluid dynamic (CFD). Firstly,the fluid field around waterjet system is simulated by solving the Reynolds Averaged Navier-Stokes (RANS) equations using commercial CFD code Fluent. Then an additional User-Defined Scalar (UDS) equation is embedded into Fluent to get the virtual dividing surface between the internal flow ingested into the inlet duct and the external flow beneath the hull,which is named as streamtube. By virtual of the streamtube the flow loss can be calculated according to the difference of total pressure between the duct outlet and the capture area ahead of the intake. The results from CFD calculation show that the flow loss coeflcient of a typical flush-type inlet duct is varying from 0.05 to 0.12 at different operation conditions,being obviously less than the value of 0.2-0.3 from empirical rules. With the results of this paper the prediction accuracy on propulsive performance of the waterjet system can be improved further.展开更多
Acoustically absorptive treatment in aircraft engine nacelle is an essential part of the overall aircraft noise reduction effort. The investigation on the optimization of multi-liners plays an important role in noise ...Acoustically absorptive treatment in aircraft engine nacelle is an essential part of the overall aircraft noise reduction effort. The investigation on the optimization of multi-liners plays an important role in noise reduction. Based upon the mode analysis method of sound propagation in a circular duct with multiple liners, a flexible tolerance method is used to optimize the acoustic parameters(impedance), geometric structure parameters(such as open area ratio, cavity depth and hole diameter) and operating condition parameters(such as blade passing frequency). The mathematical models for these kinds of optimization are presented here. The optimum values of the design variables are determined when the in-duct sound suppression approaches a maximum. It can be derived from the optimum results that the emphasis of the engineering optimization design of the perforated plate honey-comb structure should be placed on the optimum choice of the open area ratio and cavity depth. Some reference criteria for the engineering design of the multi-linings are also provided.展开更多
文摘In the process of performance prediction of waterjet system,the flow loss of inlet duct is usually reckoned by the rule of thumb. But its value is often overestimated to some extent,resulting in error of prediction accuracy. This paper introduces a new method to determine the flow loss by means of computational fluid dynamic (CFD). Firstly,the fluid field around waterjet system is simulated by solving the Reynolds Averaged Navier-Stokes (RANS) equations using commercial CFD code Fluent. Then an additional User-Defined Scalar (UDS) equation is embedded into Fluent to get the virtual dividing surface between the internal flow ingested into the inlet duct and the external flow beneath the hull,which is named as streamtube. By virtual of the streamtube the flow loss can be calculated according to the difference of total pressure between the duct outlet and the capture area ahead of the intake. The results from CFD calculation show that the flow loss coeflcient of a typical flush-type inlet duct is varying from 0.05 to 0.12 at different operation conditions,being obviously less than the value of 0.2-0.3 from empirical rules. With the results of this paper the prediction accuracy on propulsive performance of the waterjet system can be improved further.
文摘Acoustically absorptive treatment in aircraft engine nacelle is an essential part of the overall aircraft noise reduction effort. The investigation on the optimization of multi-liners plays an important role in noise reduction. Based upon the mode analysis method of sound propagation in a circular duct with multiple liners, a flexible tolerance method is used to optimize the acoustic parameters(impedance), geometric structure parameters(such as open area ratio, cavity depth and hole diameter) and operating condition parameters(such as blade passing frequency). The mathematical models for these kinds of optimization are presented here. The optimum values of the design variables are determined when the in-duct sound suppression approaches a maximum. It can be derived from the optimum results that the emphasis of the engineering optimization design of the perforated plate honey-comb structure should be placed on the optimum choice of the open area ratio and cavity depth. Some reference criteria for the engineering design of the multi-linings are also provided.