The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,whi...The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,which is unfavorable to improve the performance of positive displacement blower.To investigate the effects of spiral inlet and outlet on the aerodynamic performance of positive displacement blower,three-dimensional unsteady flow characteristics in a three-lobe positive displacement blower with and without the spiral inlet and outlet are simulated by solving Navier-Stokes equations coupled with RNG k-ε turbulent model.In the numerical simulation,the dynamic mesh technique and overset mesh updating method are used.The computational results are compared with the experimental measurements on the variation of flow rate with the outlet pressure to verify the validity of the numerical method presented.The results show that the mass flow rate with the change of pressure is slightly affected by the application of spiral inlet and outlet,but the internal flow state is largely affected.In the exhaust region,the fluctuations of pressure,velocity and temperature as well as the average values of velocity are significantly reduced.This illustrates that the spiral outlet can effectively suppress the fluctuations of pressure,thus reducing reflux shock and energy dissipation.In the intake area,the average value of pressure,velocity and temperature are slightly declined,but the fluctuations of them are significantly reduced,indicating that the spiral inlet plays the role in making the flow more stable.The numerical results obtained reveal the three-dimensional flow characteristics of the positive displacement blower with spiral inlet and outlet,and provide useful reference to improve performance and empirical correction in the noise-reduction design of the positive displacement blowers.展开更多
The Swan Lake Inlet, the State Primary Wildlife Protection Area, is a lagoon\|inlet system located in the Rongcheng Bay, Shandong Peninsula, China. It has been undergoing development for aquaculture and tourism. In th...The Swan Lake Inlet, the State Primary Wildlife Protection Area, is a lagoon\|inlet system located in the Rongcheng Bay, Shandong Peninsula, China. It has been undergoing development for aquaculture and tourism. In the summer of 1999, a study on the environment of the Swan Lake Inlet was carried out. The concentrations of the major elements and trace elements Fe, Al, Pb, Zn, Cd, Cu, Cr, Mn and P have been measured by ICP\|AES and graphite furnace atomic adsorption spectrometry. The sources and distribution of the elements in the Swan Lake Inlet have been discussed. It is concluded that the Swan Lake Inlet has not been subjected to significant environmental pollution.\; The chemical results show that the dissolved oxygen (DO) contents are generally normal. At some locations DO solubility appears to be >100%. The BOD\-5 (five\|day biochemical oxygen demand) values are generally <4 mg/L and COD (chemical oxygen demand) 3~4 mg/L. The seawater N, P and Si contents are lower than the Class I water type specified by the Chinese National Standard of Water Quality. The low nutrient distribution reflects little discharge from land, therefore lacking of nutrient supply.展开更多
The intrinsic and global kinetics of methanol synthesis from carbon monoxide, carbon dioxide and hydrogen in the presence of C301 commercial catalyst is studied. The investigation is performed under typical commercial...The intrinsic and global kinetics of methanol synthesis from carbon monoxide, carbon dioxide and hydrogen in the presence of C301 commercial catalyst is studied. The investigation is performed under typical commercial conditions in an isothermal plug-flow integral reactor and展开更多
The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dim...The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dimensional (3D) turbulence flow in conduits is an important method to study the hydraulic performance and conduct an optimum hydraulic design for the conduits. With the analyses of the flow patterns in the inlet and outlet conduits, the boundary conditions of the numerical simulation for them can be determined. The main obtained conclusions are as follows: (i) Under normal operation conditions, there is essentially no pre-swirl flow at the impeller chamber inlet of an axial-flow pump system, based on which the boundary condition at the inlet conduit may be defined. (ii) The circulation at the guide vane outlet of an axial-flow pump system has a great effect on the hydraulic performance of the outlet conduit, and there is optimum circulation for the performance. Therefore, it is strongly suggested to design the guide vane according to the optimum circulation. (iii) The residual circulation at the guide vane outlet needs to be considered for the inlet boundary condition of the outlet conduit, and the value of the circulation may be measured in a specially designed test model.展开更多
The performance curves of the synthetic gas compressor of a Kellogg-type ammonia plant are fitted bypolynomial models, and regression models are also presented for the vapor-liquid equilibrium of ammonia separa-tion p...The performance curves of the synthetic gas compressor of a Kellogg-type ammonia plant are fitted bypolynomial models, and regression models are also presented for the vapor-liquid equilibrium of ammonia separa-tion process and the loop pressure drop. The refrigeration duty required for展开更多
基金supported by Fundamental Research Funds for the Central UniversitiesChina(Grant No.xjj20100073)Science and Technology Innovation Project of Shaanxi Province of China(Grant No.2011KTCL01-04)
文摘The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,which is unfavorable to improve the performance of positive displacement blower.To investigate the effects of spiral inlet and outlet on the aerodynamic performance of positive displacement blower,three-dimensional unsteady flow characteristics in a three-lobe positive displacement blower with and without the spiral inlet and outlet are simulated by solving Navier-Stokes equations coupled with RNG k-ε turbulent model.In the numerical simulation,the dynamic mesh technique and overset mesh updating method are used.The computational results are compared with the experimental measurements on the variation of flow rate with the outlet pressure to verify the validity of the numerical method presented.The results show that the mass flow rate with the change of pressure is slightly affected by the application of spiral inlet and outlet,but the internal flow state is largely affected.In the exhaust region,the fluctuations of pressure,velocity and temperature as well as the average values of velocity are significantly reduced.This illustrates that the spiral outlet can effectively suppress the fluctuations of pressure,thus reducing reflux shock and energy dissipation.In the intake area,the average value of pressure,velocity and temperature are slightly declined,but the fluctuations of them are significantly reduced,indicating that the spiral inlet plays the role in making the flow more stable.The numerical results obtained reveal the three-dimensional flow characteristics of the positive displacement blower with spiral inlet and outlet,and provide useful reference to improve performance and empirical correction in the noise-reduction design of the positive displacement blowers.
基金ThisresearchprojectwasgrantedjointlybytheStartingFundsforBack From AbroadDoctorssponsoredbytheQingdaoUni versityandtheNationalOu
文摘The Swan Lake Inlet, the State Primary Wildlife Protection Area, is a lagoon\|inlet system located in the Rongcheng Bay, Shandong Peninsula, China. It has been undergoing development for aquaculture and tourism. In the summer of 1999, a study on the environment of the Swan Lake Inlet was carried out. The concentrations of the major elements and trace elements Fe, Al, Pb, Zn, Cd, Cu, Cr, Mn and P have been measured by ICP\|AES and graphite furnace atomic adsorption spectrometry. The sources and distribution of the elements in the Swan Lake Inlet have been discussed. It is concluded that the Swan Lake Inlet has not been subjected to significant environmental pollution.\; The chemical results show that the dissolved oxygen (DO) contents are generally normal. At some locations DO solubility appears to be >100%. The BOD\-5 (five\|day biochemical oxygen demand) values are generally <4 mg/L and COD (chemical oxygen demand) 3~4 mg/L. The seawater N, P and Si contents are lower than the Class I water type specified by the Chinese National Standard of Water Quality. The low nutrient distribution reflects little discharge from land, therefore lacking of nutrient supply.
基金Project supported by the science fund of the Chinese Academy of Sciences and the Ministry of Chemical Industry
文摘The intrinsic and global kinetics of methanol synthesis from carbon monoxide, carbon dioxide and hydrogen in the presence of C301 commercial catalyst is studied. The investigation is performed under typical commercial conditions in an isothermal plug-flow integral reactor and
基金Project supported by the Natural Science Foundation of Jiangsu Higher Education Institutions ofChina(No.12KJD570001)
文摘The flow patterns in the inlet and outlet conduits have a decisive effect on the safe, stable, and highly efficient operation of the pump in a large pumping station with low head. The numerical simulation of three-dimensional (3D) turbulence flow in conduits is an important method to study the hydraulic performance and conduct an optimum hydraulic design for the conduits. With the analyses of the flow patterns in the inlet and outlet conduits, the boundary conditions of the numerical simulation for them can be determined. The main obtained conclusions are as follows: (i) Under normal operation conditions, there is essentially no pre-swirl flow at the impeller chamber inlet of an axial-flow pump system, based on which the boundary condition at the inlet conduit may be defined. (ii) The circulation at the guide vane outlet of an axial-flow pump system has a great effect on the hydraulic performance of the outlet conduit, and there is optimum circulation for the performance. Therefore, it is strongly suggested to design the guide vane according to the optimum circulation. (iii) The residual circulation at the guide vane outlet needs to be considered for the inlet boundary condition of the outlet conduit, and the value of the circulation may be measured in a specially designed test model.
文摘The performance curves of the synthetic gas compressor of a Kellogg-type ammonia plant are fitted bypolynomial models, and regression models are also presented for the vapor-liquid equilibrium of ammonia separa-tion process and the loop pressure drop. The refrigeration duty required for