Traumatic brain injury is a global health crisis,causing significant death and disability worldwide.Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive im...Traumatic brain injury is a global health crisis,causing significant death and disability worldwide.Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments,with astrocytes involved in this response.Following traumatic brain injury,astrocytes rapidly become reactive,and astrogliosis propagates from the injury core to distant brain regions.Homeostatic astroglial proteins are downregulated near the traumatic brain injury core,while pro-inflammatory astroglial genes are overexpressed.This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery.In addition,glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration,but in the long term impedes axonal reconnection and functional recovery.Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications.Statins,cannabinoids,progesterone,beta-blockers,and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes.In this review,we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury,especially using cell-targeted strategies with miRNAs or lncRNA,viral vectors,and repurposed drugs.展开更多
Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-i...Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.展开更多
Diabetic nephropathy (DN) is an enduring condition that leads to inflammation and affects a substantial number of individuals with diabetes worldwide. A gradual reduction in glomerular filtration and emergence of prot...Diabetic nephropathy (DN) is an enduring condition that leads to inflammation and affects a substantial number of individuals with diabetes worldwide. A gradual reduction in glomerular filtration and emergence of proteins in the urine are typical aspects of DN, ultimately resulting in renal failure. Mounting evidence suggests that immunological and inflammatory factors are crucial for the development of DN. Therefore, the activation of innate immunity by resident renal and immune cells is critical for initiating and perpetuating inflammation. Toll-like receptors (TLRs) are an important group of receptors that identify patterns and activate immune responses and inflammation. Meanwhile, inflammatory responses in the liver, pancreatic islets, and kidneys involve inflammasomes and chemokines that generate pro-inflammatory cytokines. Moreover, the activation of the complement cascade can be triggered by glycated proteins. This review highlights recent findings elucidating how the innate immune system contributes to tissue fibrosis and organ dysfunction, ultimately leading to renal failure. This review also discusses innovative approaches that can be utilized to modulate the innate immune responses in DN for therapeutic purposes.展开更多
With continuous population and economic growth in the 21st century,plastic pollution is a major global issue.However,the health concern of microplastics/nanoplastics(MPs/NPs)decomposed from plastic wastes has drawn pu...With continuous population and economic growth in the 21st century,plastic pollution is a major global issue.However,the health concern of microplastics/nanoplastics(MPs/NPs)decomposed from plastic wastes has drawn public attention only in the recent decade.This article summarizes recent works dedicated to understanding the impact of MPs/NPs on the liver-the largest digestive organ,which is one of the primary routes that MPs/NPs enter human bodies.The interrelated mechanisms including oxidative stress,hepatocyte energy re-distribution,cell death and autophagy,as well as immune responses and inflammation,were also featured.In addition,the disturbance of microbiome and gut-liver axis,and the association with clinical diseases such as metabolic dysfunction-associated fatty liver disease,steatohepatitis,liver fibrosis,and cirrhosis were briefly discussed.Finally,we discussed potential directions in regard to this trending topic,highlighted current challenges in research,and proposed possible solutions.展开更多
Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the und...Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.展开更多
Objective Innate lymphoid cells(ILCs)are a class of newly discovered immunocytes.Group 1 ILCs(ILC1s)are identified in the decidua of humans and mice.High mobility group box 1(HMGB1)is predicted to be one of the target...Objective Innate lymphoid cells(ILCs)are a class of newly discovered immunocytes.Group 1 ILCs(ILC1s)are identified in the decidua of humans and mice.High mobility group box 1(HMGB1)is predicted to be one of the target genes of miR-142-3p,which is closely related to pregnancy-related diseases.Furthermore,miR-142-3p and HMGB1 are involved in regulating the NF-κB signaling pathway.This study aimed to examine the regulatory effect of miR-142-3p on ILC1s and the underlying mechanism involving HMGB1 and the NF-κB signaling pathway.Methods Mouse models of normal pregnancy and abortion were constructed,and the alterations of ILC1s,miR-142-3p,ILC1 transcription factor(T-bet),and pro-inflammatory cytokines of ILC1s(TNF-α,IFN-γand IL-2)were detected in mice from different groups.The targeting regulation of HMGB1 by miR-142-3p in ILC1s,and the expression of HMGB1 in normal pregnant mice and abortive mice were investigated.In addition,the regulatory effects of miR-142-3p and HMGB1 on ILC1s were detected in vitro by CCK-8,Annexin-V/PI,ELISA,and RT-PCR,respectively.Furthermore,changes of the NF-κB signaling pathway in ILC1s were examined in the different groups.For the in vivo studies,miR-142-3p-Agomir was injected in the uterus of abortive mice to evaluate the abortion rate and alterations of ILC1s at the maternal-fetal interface,and further detect the expression of HMGB1,pro-inflammatory cytokines,and the NF-κB signaling pathway.Results The number of ILC1s was significantly increased,the level of HMGB1 was significantly upregulated,and that of miR-142-3p was considerably downregulated in the abortive mice as compared with the normal pregnant mice(all P<0.05).In addition,miR-142-3p was found to drastically inhibit the activation of the NF-κB signaling pathway(P<0.05).The number of ILC1s and the levels of pro-inflammatory cytokines were significantly downregulated and the activation of the NF-κB signaling pathway was inhibited in the miR-142-3p Agomir group(all P<0.05).Conclusion miR-142-3p can regulate ILC1s by targeting HMGB1 via the NF-κB signaling pathway,and attenuate the inflammation at the maternal-fetal interface in abortive mice.展开更多
Production of proinflammatory cytokines in the central nervous system is a key process in the neuroinflammatory response to trauma,infection,and neurodegenerative diseases(Kumar,2019).These intercellular signaling mol...Production of proinflammatory cytokines in the central nervous system is a key process in the neuroinflammatory response to trauma,infection,and neurodegenerative diseases(Kumar,2019).These intercellular signaling molecules play multiple roles in the immune response in the central nervous system including the orchestration of the sickness response to innate immune perturbations in the brain(Dantzer et al.,2008).展开更多
Lysozyme(EC3.2.1.17)plays an important role in the immune response;as a nonspecific immune factor,it can resist causative agents.Lysozyme can be divided into c-type and g-type in fish.In a previous study,through genom...Lysozyme(EC3.2.1.17)plays an important role in the immune response;as a nonspecific immune factor,it can resist causative agents.Lysozyme can be divided into c-type and g-type in fish.In a previous study,through genome-wide association analysis,the g-type lysozyme gene,which is named NaLyg in yellow drum(Nibea albiflora),was found to be a key candidate gene for disease resistance in response to Vibrio harveyi infection.The cDNA of NaLyg was 1025 bp,including four exons and three introns,and its open reading frame(ORF)had a full-length of 582 bp,encoding 193 amino acids.NaLyg was found to be conserved during evolution through bioinformatic analyses.The NaLyg protein possessed a sugar binding domain and three catalytic sites,including Glu71,Asp84 and Asp101.Quantitative qRT-PCR results confirmed that NaLyg gene mRNA was visibly increased after V.harveyi infection.The NaLyg protein purified by prokaryotic expression killed some gram-negative bacterial pathogens by inducing cell wall destruction,including V.harveyi,Aeromonas hydrophila and Edwardsiella tarda.Moreover,the NaLyg protein killed two gram-positive bacteria,Bacillus subtilis and Staphylococcus aureus.Taken together,the experimental results suggested that the NaLyg protein of N.albiflora played an important role in fighting bacterial infections.展开更多
Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previo...Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previous work demonstrated the protective effect of OA on intestinal health,but the underlying molecular mechanisms remain unclear.This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli(ETEC)in piglets.The key molecular role of bile acid receptor signaling in this process has also been explored.Results Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets(P<0.05).OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum(P<0.05).This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets.In addition,as a natural ligand of bile acid receptors,OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR(P<0.05).Specifically,OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream c AMP-PKA-CREB signaling pathway(P<0.05).Furthermore,OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR(P<0.05),thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells.Conclusions In conclusion,our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response,which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.展开更多
Inhibiting the death receptor 3(DR3)signaling pathway in group 3 innate lymphoid cells(ILC3s)presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis(UC).Paeoniflorin,a promine...Inhibiting the death receptor 3(DR3)signaling pathway in group 3 innate lymphoid cells(ILC3s)presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis(UC).Paeoniflorin,a prominent component of Paeonia lactiflora Pall.,has demonstrated the ability to restore barrier function in UC mice,but the precise mechanism remains unclear.In this study,we aimed to delve into whether paeoniflorin may promote intestinal mucosal repair in chronic colitis by inhibiting DR3 signaling in ILC3s.C57BL/6 mice were subjected to random allocation into 7 distinct groups,namely the control group,the 2%dextran sodium sulfate(DSS)group,the paeoniflorin groups(25,50,and 100 mg/kg),the anti-tumor necrosis factor-like ligand 1A(anti-TL1A)antibody group,and the IgG group.We detected the expression of DR3 signaling pathway proteins and the proportion of ILC3s in the mouse colon using Western blot and flow cytometry,respectively.Meanwhile,DR3-overexpressing MNK-3 cells and 2%DSS-induced Rag1^(-/-)mice were used for verification.The results showed that paeoniflorin alleviated DSS-induced chronic colitis and repaired the intestinal mucosal barrier.Simultaneously,paeoniflorin inhibited the DR3 signaling pathway in ILC3s and regulated the content of cytokines(interleukin-17A,granulocyte-macrophage colony stimulating factor,and interleukin-22).Alternatively,paeoniflorin directly inhibited the DR3 signaling pathway in ILC3s to repair mucosal damage independently of the adaptive immune system.We additionally confirmed that paeoniflorin-conditioned medium(CM)restored the expression of tight junctions in Caco-2 cells via coculture.In conclusion,paeoniflorin ameliorates chronic colitis by enhancing the intestinal barrier in an ILC3-dependent manner,and its mechanism is associated with the inhibition of the DR3 signaling pathway.展开更多
African swine fever(ASF),caused by the ASF virus(ASFV),is an acute,severe,and highly contagious infectious disease in domestic pigs and wild boars.Domestic pigs infected with a virulent ASFV strain can have morbidity ...African swine fever(ASF),caused by the ASF virus(ASFV),is an acute,severe,and highly contagious infectious disease in domestic pigs and wild boars.Domestic pigs infected with a virulent ASFV strain can have morbidity and mortality rates of up to 100%.The epidemic of ASF has caused serious economic losses to the global pig industry.Currently,there is no safe and efective vaccine or specifc drug for treating ASF.Therefore,ASFV still poses a great threat to pig factories.ASFV is a double-stranded DNA virus with a complex icosahedral multilayer structure.The ASFV genome contains 150-170 open reading frames(ORFs)that encode 150-200 proteins.Some ASFV-encoded proteins are involved in virus invasion,genome replication,DNA repair,and virion formation.Some ASFV proteins execute immunomodulatory functions by regulating the host antiviral innate immune response.Accumulating studies have shown that the immunomodulatory functions of ASFV genes are closely related to the virulence and pathogenicity of ASFV isolates.This review summarizes the research advances on ASFV immune evasion mechanisms in African swine fever patients and provides new insights for developing attenuated live vaccine candidates to prevent and control ASF.展开更多
Chronic obstructive pulmonary disease(COPD)is a multifaceted syndrome characterized by a dysregulated inflammatory cascade within the respiratory system,primarily triggered by exposure to harmful particles and gases,n...Chronic obstructive pulmonary disease(COPD)is a multifaceted syndrome characterized by a dysregulated inflammatory cascade within the respiratory system,primarily triggered by exposure to harmful particles and gases,notably from cigarette smoke.This inflammatory response is orchestrated by innate immune cells like macrophages and epithelial cells,which recognize danger signals released from damaged cells.Prolonged inflammation prompts an adaptive immune reaction mediated by dendritic cells,culminating in the formation of lymphoid follicles and involving a complex interplay of T and B cells,as well as cytotoxic activity.Additionally,both viral and bacterial infections exacerbate COPD by further igniting inflammatory pathways,perpetuating the chronic inflammatory state.This comprehensive review encapsulates the intricate interplay between innate and adaptive immunity in COPD,with a particular focus on the role of cigarette smoke in its pathogenesis and potential therapeutic targets.展开更多
Schisandrae Fructus, containing schisandrin B (Sch B) as its main active component, is recognized in traditional Chinese medicine (TCM) for its Qi-invigorating properties in the five visceral organs. Our laboratory ha...Schisandrae Fructus, containing schisandrin B (Sch B) as its main active component, is recognized in traditional Chinese medicine (TCM) for its Qi-invigorating properties in the five visceral organs. Our laboratory has shown that the Qi-invigorating action of Chinese tonifying herbs is linked to increased mitochondrial ATP generation and an enhancement in mitochondrial glutathione redox status. To explore whether Sch B can exert Qi-invigorating actions across various tissues, we investigated the effects of Sch B treatment on mitochondrial ATP generation and glutathione redox status in multiple mouse tissues ex vivo. In line with TCM theory, which posits that Zheng Qi generation relies on the Qi function of the visceral organs, we also examined Sch B’s impact on natural killer cell activity and antigen-induced splenocyte proliferation, both serving as indirect measures of Zheng Qi. Our findings revealed that Sch B treatment consistently enhanced mitochondrial ATP generation and improved mitochondrial glutathione redox status in mouse tissues. This boost in mitochondrial function was associated with stimulated innate and adaptive immune responses, marked by increased natural killer cell activity and antigen-induced T/B cell proliferation, potentially through the increased generation of Zheng Qi.展开更多
Ma Shi Wen Tong is a very influential book in the field of linguistics.Its theory of language is closely related to the social background of China at that time.The paper will deal with concept of language in this book...Ma Shi Wen Tong is a very influential book in the field of linguistics.Its theory of language is closely related to the social background of China at that time.The paper will deal with concept of language in this book from a cultural and historical perspective.展开更多
The complement system plays a crucial role in the innate defense against common pathogens. Activation of complement leads to robust and efficient proteolytic cascades, which terminate in opsonization and lysis of the ...The complement system plays a crucial role in the innate defense against common pathogens. Activation of complement leads to robust and efficient proteolytic cascades, which terminate in opsonization and lysis of the pathogen as well as in the generation of the classical inflammatory response through the production of potent proinflammatory molecules. More recently, however, the role of complement in the immune response has been expanded due to observations that link complement activation to adaptive immune responses. It is now appreciated that complement is a functional bridge between innate and adaptive immune responses that allows an integrated host defense to pathogenic challenges. As such, a study of its functions allows insight into the molecular underpinnings of host-pathogen interactions as well as the organization and orchestration of the host immune response. This review attempts to summarize the roles that complement plays in both innate and adaptive immune responses and the consequences of these interactions on host defense.展开更多
Diabetes mellitus and its complications are becoming one of the most important health problems in the world. Diabetic nephropathy is now the main cause of end-stage renal disease. The mechanisms leading tothe developm...Diabetes mellitus and its complications are becoming one of the most important health problems in the world. Diabetic nephropathy is now the main cause of end-stage renal disease. The mechanisms leading tothe development and progression of renal injury are not well known. Therefore, it is very important to f ind new pathogenic pathways to provide opportunities for early diagnosis and targets for novel treatments. At the present time, we know that activation of innate immunity with development of a chronic low grade inflammatory response is a recognized factor in the pathogenesis of diabetic nephropathy. Numerous experimental and clinical studies have shown the participation of different inflammatory molecules and pathways in the pathophysiology of this complication.展开更多
Theories explaining the etiopathogenesis of inflammatory bowel disease (IBD) have been proposed ever since Crohn's disease (CD) and ulcerative colitis (UC) were recognized as the two major forms of the disease....Theories explaining the etiopathogenesis of inflammatory bowel disease (IBD) have been proposed ever since Crohn's disease (CD) and ulcerative colitis (UC) were recognized as the two major forms of the disease. Although the exact cause(s) and mechanisms of tissue damage in CD and UC have yet to be completely understood, enough progress has occurred to accept the following hypothesis as valid: IBD is an inappropriate immune response that occurs in genetically susceptible individuals as the result of a complex interaction among environmental factors, microbial factors, and the intestinal immune system. Among an almost endless list of environmental factors, smoking has been identified as a risk factor for CD and a protective factor for UC. Among microbial factors, no convincing evidence indicates that classical infectious agents cause IBD, while mounting evidence points to an abnormal immune response against the normal enteric flora as being of central importance. Gut inflammation is mediated by cells of the innate as well as adaptive immune systems, with the additional contribution of non-immune cells, such as epithelial, mesenchymal and endothelial cells, and platelets.展开更多
Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant innate immune responses. In a genetic screen to search for mutants with constitutive defense responses, we identified multipl...Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant innate immune responses. In a genetic screen to search for mutants with constitutive defense responses, we identified multiple alleles of mpk4 and mekkl that exhibit cell death and constitutive defense responses. Bimolecular fluorescence complemen- tation (BiFC) analysis showed that both MPK4 and MEKK1 interact with MKK1 and MKK2, two closely related MAPK kinases, mkkl and mkk2 single mutant plants do not have obvious mutant phenotypes. To test whether MKK1 and MKK2 function redundantly, mkkl mkk2 double mutants were generated. The mkkl mkk2 double mutant plants die at seedling stage and the seedling-lethality phenotype is temperature-dependent. Similar to the mpk4 and mekkl mutants, the mkkl mkk2 double mutant seedlings accumulate high levels of H202, display spontaneous cell death, constitutively express Pathogenesis Related (PR) genes and exhibit pathogen resistance. In addition, activation of MPK4 by fig22 is impaired in the mkkl mkk2 double mutants, suggesting that MKK1 and MKK2 function together with MPK4 and MEKK1 in a MAP kinase cascade to negatively regulate innate immune responses in plants.展开更多
Cholestasis results in a buildup of bile acids in serum and in hepatocytes.Early studies into the mechanisms of cholestatic liver injury strongly implicated bile acidinduced apoptosis as the major cause of hepatocellu...Cholestasis results in a buildup of bile acids in serum and in hepatocytes.Early studies into the mechanisms of cholestatic liver injury strongly implicated bile acidinduced apoptosis as the major cause of hepatocellular injury.Recent work has focused both on the role of bile acids in cell signaling as well as the role of sterile inflammation in the pathophysiology.Advances in modern analytical methodology have allowed for more accurate measuring of bile acid concentrations in serum,liver,and bile to very low levels of detection.Interestingly,toxic bile acid levels are seemingly far lower than previously hypothesized.The initial hypothesis has been based largely upon the exposure of μmol/L concentrations of toxic bile acids and bile salts to primary hepatocytes in cell culture,the possibility that in vivo bile acid concentrations may be far lower than the observed in vitro toxicity has far reaching implications in the mechanism of injury.This review will focus on both how different bile acids and different bile acid concentrations can affect hepatocytes during cholestasis,and additionally provide insight into how these data support recent hypotheses that cholestatic liver injury may not occur through direct bile acid-induced apoptosis,but may involve largely inflammatory cell-mediated liver cell necrosis.展开更多
Inflammatory bowel disease (IBD) arises from disruption of immune tolerance to the gut commensal microbiota, leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts. In healthy...Inflammatory bowel disease (IBD) arises from disruption of immune tolerance to the gut commensal microbiota, leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts. In healthy individuals the intestinal microbiota have a symbiotic relationship with the host organism and possess important and unique functions, including a metabolic function (i.e. digestion of dietary compounds and xenobiotics, fermentation of undigestible carbohydrates with production of short chain fatty acids), a mucosal barrier function (i.e. by inhibiting pathogen invasion and strengthening epithelial barrier integrity), and an immune modula- tory function (i.e. mucosal immune system priming and maintenance of intestinal epithelium homeostasis). A fine balance regulates the mechanism that allows co- existence of mammals with their commensal bacteria. In IBD this mechanism of immune tolerance is impaired because of several potential causative factors. The gut microbiota composition and activity of IBD patients are abnormal, with a decreased prevalence of dominant members of the human commensal microbiota (i.e. Clostridium IXa and IV groups, Bacteroides, bifldobacteria) and a concomitant increase in detrimental bacteria (i.e. sulphate-reducing bacteria, Escherichia coll. The observed dysbiosis is concomitant with defectiveinnate immunity and bacterial killing (i.e. reduced mucosal defensins and IgA, malfunctioning phagocytosis) and overaggressive adaptive immune response (due to ineffective regulatory T cells and antigen presenting cells), which are considered the basis of IBD pathogen- esis. However, we still do not know how the interplay between these parameters causes the disease. Studies looking at gut microbial composition, epithelial integrity and mucosal immune markers in genotyped IBD populations are therefore warranted to shed light on this obscure pathogenesis.展开更多
基金supported by grants PICT 2019-08512017-2203,UBACYT and PIP CONICET(to AJR).
文摘Traumatic brain injury is a global health crisis,causing significant death and disability worldwide.Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments,with astrocytes involved in this response.Following traumatic brain injury,astrocytes rapidly become reactive,and astrogliosis propagates from the injury core to distant brain regions.Homeostatic astroglial proteins are downregulated near the traumatic brain injury core,while pro-inflammatory astroglial genes are overexpressed.This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery.In addition,glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration,but in the long term impedes axonal reconnection and functional recovery.Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications.Statins,cannabinoids,progesterone,beta-blockers,and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes.In this review,we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury,especially using cell-targeted strategies with miRNAs or lncRNA,viral vectors,and repurposed drugs.
基金supported by research grants from the Ningbo Science and Technology Plan Project,No.2022Z143hezuo(to BL)the National Natural Science Foundation of China,No.82201520(to XD)。
文摘Although microglial polarization and neuroinflammation are crucial cellular responses after traumatic brain injury,the fundamental regulatory and functional mechanisms remain insufficiently understood.As potent anti-inflammato ry agents,the use of glucoco rticoids in traumatic brain injury is still controversial,and their regulatory effects on microglial polarization are not yet known.In the present study,we sought to determine whether exacerbation of traumatic brain injury caused by high-dose dexamethasone is related to its regulatory effects on microglial polarization and its mechanisms of action.In vitro cultured BV2 cells and primary microglia and a controlled cortical impact mouse model were used to investigate the effects of dexamethasone on microglial polarization.Lipopolysaccharide,dexamethasone,RU486(a glucocorticoid receptor antagonist),and ruxolitinib(a Janus kinase 1 antagonist)were administered.RNA-sequencing data obtained from a C57BL/6 mouse model of traumatic brain injury were used to identify potential targets of dexamethasone.The Morris water maze,quantitative reverse transcription-polymerase chain reaction,western blotting,immunofluorescence and confocal microscopy analysis,and TUNEL,Nissl,and Golgi staining were performed to investigate our hypothesis.High-throughput sequencing results showed that arginase 1,a marker of M2 microglia,was significantly downregulated in the dexamethasone group compared with the traumatic brain injury group at3 days post-traumatic brain injury.Thus dexamethasone inhibited M1 and M2 microglia,with a more pronounced inhibitory effect on M2microglia in vitro and in vivo.Glucocorticoid receptor plays an indispensable role in microglial polarization after dexamethasone treatment following traumatic brain injury.Additionally,glucocorticoid receptor activation increased the number of apoptotic cells and neuronal death,and also decreased the density of dendritic spines.A possible downstream receptor signaling mechanism is the GR/JAK1/STAT3 pathway.Overactivation of glucocorticoid receptor by high-dose dexamethasone reduced the expression of M2 microglia,which plays an antiinflammatory role.In contrast,inhibiting the activation of glucocorticoid receptor reduced the number of apoptotic glia and neurons and decreased the loss of dendritic spines after traumatic brain injury.Dexamethasone may exe rt its neurotoxic effects by inhibiting M2 microglia through the GR/JAK1/STAT3 signaling pathway.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.:82100801,81974096,81770711,81974097,and 81961138007).
文摘Diabetic nephropathy (DN) is an enduring condition that leads to inflammation and affects a substantial number of individuals with diabetes worldwide. A gradual reduction in glomerular filtration and emergence of proteins in the urine are typical aspects of DN, ultimately resulting in renal failure. Mounting evidence suggests that immunological and inflammatory factors are crucial for the development of DN. Therefore, the activation of innate immunity by resident renal and immune cells is critical for initiating and perpetuating inflammation. Toll-like receptors (TLRs) are an important group of receptors that identify patterns and activate immune responses and inflammation. Meanwhile, inflammatory responses in the liver, pancreatic islets, and kidneys involve inflammasomes and chemokines that generate pro-inflammatory cytokines. Moreover, the activation of the complement cascade can be triggered by glycated proteins. This review highlights recent findings elucidating how the innate immune system contributes to tissue fibrosis and organ dysfunction, ultimately leading to renal failure. This review also discusses innovative approaches that can be utilized to modulate the innate immune responses in DN for therapeutic purposes.
文摘With continuous population and economic growth in the 21st century,plastic pollution is a major global issue.However,the health concern of microplastics/nanoplastics(MPs/NPs)decomposed from plastic wastes has drawn public attention only in the recent decade.This article summarizes recent works dedicated to understanding the impact of MPs/NPs on the liver-the largest digestive organ,which is one of the primary routes that MPs/NPs enter human bodies.The interrelated mechanisms including oxidative stress,hepatocyte energy re-distribution,cell death and autophagy,as well as immune responses and inflammation,were also featured.In addition,the disturbance of microbiome and gut-liver axis,and the association with clinical diseases such as metabolic dysfunction-associated fatty liver disease,steatohepatitis,liver fibrosis,and cirrhosis were briefly discussed.Finally,we discussed potential directions in regard to this trending topic,highlighted current challenges in research,and proposed possible solutions.
基金funded by the Spanish Ministry of Economy and Competitiveness,No.PID(2019)-106498GB-100 (to MVS)by the Instituto de Salud CarlosⅢ,Fondo Europeo de Desarrollo Regional"Una manera de hacer Europa",No.PI19/00071 (to MAB)+2 种基金the RETICS subprograms of Spanish Networks OftoRed,Nos.RD16/0008/0026 (to DGB) and RD16/0008/0016 (to DGB)RICORS Terav,No.RD16/0011/0001 (to DGB)from Instituto de Salud CarlosⅢby the Fundacion Seneca,Agencia de Cienciay Tecnologia Región de Murcia,No.19881/GERM/15 (all to MVS)
文摘Advanced mesenchymal stromal cell-based therapies for neurodegenerative diseases are widely investigated in preclinical models.Mesenchymal stromal cells are well positioned as therapeutics because they address the underlying mechanisms of neurodegeneration,namely trophic factor deprivation and neuroinflammation.Most studies have focused on the beneficial effects of mesenchymal stromal cell transplantation on neuronal survival or functional improvement.However,little attention has been paid to the interaction between mesenchymal stromal cells and the host immune system due to the immunomodulatory properties of mesenchymal stromal cells and the long-held belief of the immunoprivileged status of the central nervous system.Here,we review the crosstalk between mesenchymal stromal cells and the immune system in general and in the context of the central nervous system,focusing on recent work in the retina and the importance of the type of transplantation.
基金supported by the National Key Research and Development Program of China(Nos.2018YFC1002804 and 2016YFC1000600)the National Natural Science Foundation of China(Nos.81771618 and 81971356)the Fundamental Research Funds for the Central Universities(No.2042023kf0028).
文摘Objective Innate lymphoid cells(ILCs)are a class of newly discovered immunocytes.Group 1 ILCs(ILC1s)are identified in the decidua of humans and mice.High mobility group box 1(HMGB1)is predicted to be one of the target genes of miR-142-3p,which is closely related to pregnancy-related diseases.Furthermore,miR-142-3p and HMGB1 are involved in regulating the NF-κB signaling pathway.This study aimed to examine the regulatory effect of miR-142-3p on ILC1s and the underlying mechanism involving HMGB1 and the NF-κB signaling pathway.Methods Mouse models of normal pregnancy and abortion were constructed,and the alterations of ILC1s,miR-142-3p,ILC1 transcription factor(T-bet),and pro-inflammatory cytokines of ILC1s(TNF-α,IFN-γand IL-2)were detected in mice from different groups.The targeting regulation of HMGB1 by miR-142-3p in ILC1s,and the expression of HMGB1 in normal pregnant mice and abortive mice were investigated.In addition,the regulatory effects of miR-142-3p and HMGB1 on ILC1s were detected in vitro by CCK-8,Annexin-V/PI,ELISA,and RT-PCR,respectively.Furthermore,changes of the NF-κB signaling pathway in ILC1s were examined in the different groups.For the in vivo studies,miR-142-3p-Agomir was injected in the uterus of abortive mice to evaluate the abortion rate and alterations of ILC1s at the maternal-fetal interface,and further detect the expression of HMGB1,pro-inflammatory cytokines,and the NF-κB signaling pathway.Results The number of ILC1s was significantly increased,the level of HMGB1 was significantly upregulated,and that of miR-142-3p was considerably downregulated in the abortive mice as compared with the normal pregnant mice(all P<0.05).In addition,miR-142-3p was found to drastically inhibit the activation of the NF-κB signaling pathway(P<0.05).The number of ILC1s and the levels of pro-inflammatory cytokines were significantly downregulated and the activation of the NF-κB signaling pathway was inhibited in the miR-142-3p Agomir group(all P<0.05).Conclusion miR-142-3p can regulate ILC1s by targeting HMGB1 via the NF-κB signaling pathway,and attenuate the inflammation at the maternal-fetal interface in abortive mice.
基金supported by an American Australian Association Fellowship(to MVB).
文摘Production of proinflammatory cytokines in the central nervous system is a key process in the neuroinflammatory response to trauma,infection,and neurodegenerative diseases(Kumar,2019).These intercellular signaling molecules play multiple roles in the immune response in the central nervous system including the orchestration of the sickness response to innate immune perturbations in the brain(Dantzer et al.,2008).
基金supported by the National Natural Science Foundation of China(No.32072969)the National Key R&D Program of China(No.2022YFD2401002)+1 种基金the Natural Science Foundation of Fujian Province(No.2022 J01325)the Open Research Fund Program of Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment(No.Z822280).
文摘Lysozyme(EC3.2.1.17)plays an important role in the immune response;as a nonspecific immune factor,it can resist causative agents.Lysozyme can be divided into c-type and g-type in fish.In a previous study,through genome-wide association analysis,the g-type lysozyme gene,which is named NaLyg in yellow drum(Nibea albiflora),was found to be a key candidate gene for disease resistance in response to Vibrio harveyi infection.The cDNA of NaLyg was 1025 bp,including four exons and three introns,and its open reading frame(ORF)had a full-length of 582 bp,encoding 193 amino acids.NaLyg was found to be conserved during evolution through bioinformatic analyses.The NaLyg protein possessed a sugar binding domain and three catalytic sites,including Glu71,Asp84 and Asp101.Quantitative qRT-PCR results confirmed that NaLyg gene mRNA was visibly increased after V.harveyi infection.The NaLyg protein purified by prokaryotic expression killed some gram-negative bacterial pathogens by inducing cell wall destruction,including V.harveyi,Aeromonas hydrophila and Edwardsiella tarda.Moreover,the NaLyg protein killed two gram-positive bacteria,Bacillus subtilis and Staphylococcus aureus.Taken together,the experimental results suggested that the NaLyg protein of N.albiflora played an important role in fighting bacterial infections.
基金financially supported by the National Natural Science Foundation of China(Grant No.31972580 and U21A20252)the China Agriculture Research System(CARS-35)+1 种基金the Science Fund for Distinguished Young Scholars of Heilongjiang Province(JQ2022C002)the Support Project of Young Leading Talents of Northeast Agricultural University(NEAU2023QNLJ-017)。
文摘Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previous work demonstrated the protective effect of OA on intestinal health,but the underlying molecular mechanisms remain unclear.This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli(ETEC)in piglets.The key molecular role of bile acid receptor signaling in this process has also been explored.Results Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets(P<0.05).OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum(P<0.05).This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets.In addition,as a natural ligand of bile acid receptors,OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR(P<0.05).Specifically,OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream c AMP-PKA-CREB signaling pathway(P<0.05).Furthermore,OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR(P<0.05),thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells.Conclusions In conclusion,our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response,which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.
基金supported by the National Natural Science Foundation of China(Grant No.:82074092),Natural Science Foundation of Guangdong Province,China(Grant No.:2021A1515012219)Guangzhou University of Chinese Medicine“Double First-Class”and High-level University Discipline Collaborative Innovation Team Project,China(Grant No.:2021xk81) and Graduate Research Innovation Project of Guangzhou University of Chinese Medicine,China.
文摘Inhibiting the death receptor 3(DR3)signaling pathway in group 3 innate lymphoid cells(ILC3s)presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis(UC).Paeoniflorin,a prominent component of Paeonia lactiflora Pall.,has demonstrated the ability to restore barrier function in UC mice,but the precise mechanism remains unclear.In this study,we aimed to delve into whether paeoniflorin may promote intestinal mucosal repair in chronic colitis by inhibiting DR3 signaling in ILC3s.C57BL/6 mice were subjected to random allocation into 7 distinct groups,namely the control group,the 2%dextran sodium sulfate(DSS)group,the paeoniflorin groups(25,50,and 100 mg/kg),the anti-tumor necrosis factor-like ligand 1A(anti-TL1A)antibody group,and the IgG group.We detected the expression of DR3 signaling pathway proteins and the proportion of ILC3s in the mouse colon using Western blot and flow cytometry,respectively.Meanwhile,DR3-overexpressing MNK-3 cells and 2%DSS-induced Rag1^(-/-)mice were used for verification.The results showed that paeoniflorin alleviated DSS-induced chronic colitis and repaired the intestinal mucosal barrier.Simultaneously,paeoniflorin inhibited the DR3 signaling pathway in ILC3s and regulated the content of cytokines(interleukin-17A,granulocyte-macrophage colony stimulating factor,and interleukin-22).Alternatively,paeoniflorin directly inhibited the DR3 signaling pathway in ILC3s to repair mucosal damage independently of the adaptive immune system.We additionally confirmed that paeoniflorin-conditioned medium(CM)restored the expression of tight junctions in Caco-2 cells via coculture.In conclusion,paeoniflorin ameliorates chronic colitis by enhancing the intestinal barrier in an ILC3-dependent manner,and its mechanism is associated with the inhibition of the DR3 signaling pathway.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFD1800100)the National Natural Science Foundation of China(Grant Nos.32172874 and 31941002).
文摘African swine fever(ASF),caused by the ASF virus(ASFV),is an acute,severe,and highly contagious infectious disease in domestic pigs and wild boars.Domestic pigs infected with a virulent ASFV strain can have morbidity and mortality rates of up to 100%.The epidemic of ASF has caused serious economic losses to the global pig industry.Currently,there is no safe and efective vaccine or specifc drug for treating ASF.Therefore,ASFV still poses a great threat to pig factories.ASFV is a double-stranded DNA virus with a complex icosahedral multilayer structure.The ASFV genome contains 150-170 open reading frames(ORFs)that encode 150-200 proteins.Some ASFV-encoded proteins are involved in virus invasion,genome replication,DNA repair,and virion formation.Some ASFV proteins execute immunomodulatory functions by regulating the host antiviral innate immune response.Accumulating studies have shown that the immunomodulatory functions of ASFV genes are closely related to the virulence and pathogenicity of ASFV isolates.This review summarizes the research advances on ASFV immune evasion mechanisms in African swine fever patients and provides new insights for developing attenuated live vaccine candidates to prevent and control ASF.
文摘Chronic obstructive pulmonary disease(COPD)is a multifaceted syndrome characterized by a dysregulated inflammatory cascade within the respiratory system,primarily triggered by exposure to harmful particles and gases,notably from cigarette smoke.This inflammatory response is orchestrated by innate immune cells like macrophages and epithelial cells,which recognize danger signals released from damaged cells.Prolonged inflammation prompts an adaptive immune reaction mediated by dendritic cells,culminating in the formation of lymphoid follicles and involving a complex interplay of T and B cells,as well as cytotoxic activity.Additionally,both viral and bacterial infections exacerbate COPD by further igniting inflammatory pathways,perpetuating the chronic inflammatory state.This comprehensive review encapsulates the intricate interplay between innate and adaptive immunity in COPD,with a particular focus on the role of cigarette smoke in its pathogenesis and potential therapeutic targets.
文摘Schisandrae Fructus, containing schisandrin B (Sch B) as its main active component, is recognized in traditional Chinese medicine (TCM) for its Qi-invigorating properties in the five visceral organs. Our laboratory has shown that the Qi-invigorating action of Chinese tonifying herbs is linked to increased mitochondrial ATP generation and an enhancement in mitochondrial glutathione redox status. To explore whether Sch B can exert Qi-invigorating actions across various tissues, we investigated the effects of Sch B treatment on mitochondrial ATP generation and glutathione redox status in multiple mouse tissues ex vivo. In line with TCM theory, which posits that Zheng Qi generation relies on the Qi function of the visceral organs, we also examined Sch B’s impact on natural killer cell activity and antigen-induced splenocyte proliferation, both serving as indirect measures of Zheng Qi. Our findings revealed that Sch B treatment consistently enhanced mitochondrial ATP generation and improved mitochondrial glutathione redox status in mouse tissues. This boost in mitochondrial function was associated with stimulated innate and adaptive immune responses, marked by increased natural killer cell activity and antigen-induced T/B cell proliferation, potentially through the increased generation of Zheng Qi.
文摘Ma Shi Wen Tong is a very influential book in the field of linguistics.Its theory of language is closely related to the social background of China at that time.The paper will deal with concept of language in this book from a cultural and historical perspective.
文摘The complement system plays a crucial role in the innate defense against common pathogens. Activation of complement leads to robust and efficient proteolytic cascades, which terminate in opsonization and lysis of the pathogen as well as in the generation of the classical inflammatory response through the production of potent proinflammatory molecules. More recently, however, the role of complement in the immune response has been expanded due to observations that link complement activation to adaptive immune responses. It is now appreciated that complement is a functional bridge between innate and adaptive immune responses that allows an integrated host defense to pathogenic challenges. As such, a study of its functions allows insight into the molecular underpinnings of host-pathogen interactions as well as the organization and orchestration of the host immune response. This review attempts to summarize the roles that complement plays in both innate and adaptive immune responses and the consequences of these interactions on host defense.
基金Supported by Ministerio de Ciencia e Innovación(Instituto de Salud Carlos Ⅲ-Fondo de Investigación Sanitaria:PI07/0870and PI10/576)Ministerio de Sanidad y Política Social(Dirección General de Terapias Avanzadas y Trasplante:TRA-182)Sociedad Espaola de Nefrología y ACINEF
文摘Diabetes mellitus and its complications are becoming one of the most important health problems in the world. Diabetic nephropathy is now the main cause of end-stage renal disease. The mechanisms leading tothe development and progression of renal injury are not well known. Therefore, it is very important to f ind new pathogenic pathways to provide opportunities for early diagnosis and targets for novel treatments. At the present time, we know that activation of innate immunity with development of a chronic low grade inflammatory response is a recognized factor in the pathogenesis of diabetic nephropathy. Numerous experimental and clinical studies have shown the participation of different inflammatory molecules and pathways in the pathophysiology of this complication.
基金Supported by a grant from the Broad Medical Research Program toS.D
文摘Theories explaining the etiopathogenesis of inflammatory bowel disease (IBD) have been proposed ever since Crohn's disease (CD) and ulcerative colitis (UC) were recognized as the two major forms of the disease. Although the exact cause(s) and mechanisms of tissue damage in CD and UC have yet to be completely understood, enough progress has occurred to accept the following hypothesis as valid: IBD is an inappropriate immune response that occurs in genetically susceptible individuals as the result of a complex interaction among environmental factors, microbial factors, and the intestinal immune system. Among an almost endless list of environmental factors, smoking has been identified as a risk factor for CD and a protective factor for UC. Among microbial factors, no convincing evidence indicates that classical infectious agents cause IBD, while mounting evidence points to an abnormal immune response against the normal enteric flora as being of central importance. Gut inflammation is mediated by cells of the innate as well as adaptive immune systems, with the additional contribution of non-immune cells, such as epithelial, mesenchymal and endothelial cells, and platelets.
文摘Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant innate immune responses. In a genetic screen to search for mutants with constitutive defense responses, we identified multiple alleles of mpk4 and mekkl that exhibit cell death and constitutive defense responses. Bimolecular fluorescence complemen- tation (BiFC) analysis showed that both MPK4 and MEKK1 interact with MKK1 and MKK2, two closely related MAPK kinases, mkkl and mkk2 single mutant plants do not have obvious mutant phenotypes. To test whether MKK1 and MKK2 function redundantly, mkkl mkk2 double mutants were generated. The mkkl mkk2 double mutant plants die at seedling stage and the seedling-lethality phenotype is temperature-dependent. Similar to the mpk4 and mekkl mutants, the mkkl mkk2 double mutant seedlings accumulate high levels of H202, display spontaneous cell death, constitutively express Pathogenesis Related (PR) genes and exhibit pathogen resistance. In addition, activation of MPK4 by fig22 is impaired in the mkkl mkk2 double mutants, suggesting that MKK1 and MKK2 function together with MPK4 and MEKK1 in a MAP kinase cascade to negatively regulate innate immune responses in plants.
基金Supported by The National Institutes of Health grants,R01 DK070195 and R01 AA12916,to Jaeschke Hthe "Training Program in Environmental Toxicology",T32 ES007079-26A2 from the National Institute of Environmental Health Sciences
文摘Cholestasis results in a buildup of bile acids in serum and in hepatocytes.Early studies into the mechanisms of cholestatic liver injury strongly implicated bile acidinduced apoptosis as the major cause of hepatocellular injury.Recent work has focused both on the role of bile acids in cell signaling as well as the role of sterile inflammation in the pathophysiology.Advances in modern analytical methodology have allowed for more accurate measuring of bile acid concentrations in serum,liver,and bile to very low levels of detection.Interestingly,toxic bile acid levels are seemingly far lower than previously hypothesized.The initial hypothesis has been based largely upon the exposure of μmol/L concentrations of toxic bile acids and bile salts to primary hepatocytes in cell culture,the possibility that in vivo bile acid concentrations may be far lower than the observed in vitro toxicity has far reaching implications in the mechanism of injury.This review will focus on both how different bile acids and different bile acid concentrations can affect hepatocytes during cholestasis,and additionally provide insight into how these data support recent hypotheses that cholestatic liver injury may not occur through direct bile acid-induced apoptosis,but may involve largely inflammatory cell-mediated liver cell necrosis.
文摘Inflammatory bowel disease (IBD) arises from disruption of immune tolerance to the gut commensal microbiota, leading to chronic intestinal inflammation and mucosal damage in genetically predisposed hosts. In healthy individuals the intestinal microbiota have a symbiotic relationship with the host organism and possess important and unique functions, including a metabolic function (i.e. digestion of dietary compounds and xenobiotics, fermentation of undigestible carbohydrates with production of short chain fatty acids), a mucosal barrier function (i.e. by inhibiting pathogen invasion and strengthening epithelial barrier integrity), and an immune modula- tory function (i.e. mucosal immune system priming and maintenance of intestinal epithelium homeostasis). A fine balance regulates the mechanism that allows co- existence of mammals with their commensal bacteria. In IBD this mechanism of immune tolerance is impaired because of several potential causative factors. The gut microbiota composition and activity of IBD patients are abnormal, with a decreased prevalence of dominant members of the human commensal microbiota (i.e. Clostridium IXa and IV groups, Bacteroides, bifldobacteria) and a concomitant increase in detrimental bacteria (i.e. sulphate-reducing bacteria, Escherichia coll. The observed dysbiosis is concomitant with defectiveinnate immunity and bacterial killing (i.e. reduced mucosal defensins and IgA, malfunctioning phagocytosis) and overaggressive adaptive immune response (due to ineffective regulatory T cells and antigen presenting cells), which are considered the basis of IBD pathogen- esis. However, we still do not know how the interplay between these parameters causes the disease. Studies looking at gut microbial composition, epithelial integrity and mucosal immune markers in genotyped IBD populations are therefore warranted to shed light on this obscure pathogenesis.