When a new user accesses the CDMA system, the load will change drastically, and therefore, the advanced outer loop power control (OLPC) technology has to be adopted to enrich the target signal interference ratio (S...When a new user accesses the CDMA system, the load will change drastically, and therefore, the advanced outer loop power control (OLPC) technology has to be adopted to enrich the target signal interference ratio (Silt) and improve the system performance. The existing problems about DS-CDMA outer loop power control for multi-service are introduced and the power control theoretical model is analyzed. System simulation is adopted on how to obtain the theoretical performance and parameter optimization of the power control algorithm. The OLPC algorithm is improved and the performance comparisons between the old algorithm and the improved algorithm are given. The results show good performance of the improved OLPC algorithm and prove the validity of the improved method for multi-service.展开更多
An outer loop power control algorithm based on triangle norm(t-norm) information fusion technology is proposed in this paper.According to the difference between block error rate and bit error rate with target values,t...An outer loop power control algorithm based on triangle norm(t-norm) information fusion technology is proposed in this paper.According to the difference between block error rate and bit error rate with target values,the membership function calculation and level dividing of the two differences are dealt with.And then t-norm operator is used to fuse the two membership function values to determine the adjustment step-size.The algorithm can acquire the optimal adjustment step-size in the light of the channel status and avoid the overshoot phenomenon of the existing outer power control methods.As a result,the block error rate can converge to the target value quickly.Experiment results verify the excellent property of the algorithm.展开更多
This letter studies large-disturbance stability of the power system with a synchronous generator(SG)and a converter-interfaced generation(CIG)connected to infinite bus.The power system is multi-timescale and first sim...This letter studies large-disturbance stability of the power system with a synchronous generator(SG)and a converter-interfaced generation(CIG)connected to infinite bus.The power system is multi-timescale and first simplified.It is shown that the boundary of region of attraction(ROA)of the simplified model is composed of stable manifolds of unstable equilibrium point(UEP)or semi-singular point(SSP),named anchor points,and singular surface pieces.The type of anchor point determines the dominant instability pattern of the power system.When the anchor point is UEP or SSP,the dominant instability pattern is the instability of rotor angle of SG or the instability of phase-locked loop and outer control loop(OCL)of CIG,respectively.Transition of dominant instability pattern can be analyzed with the relative position relationship between UEP and SSP.The effect of OCL is discussed.When the OCL is activated,the ROA becomes smaller and the system is more prone to instability of CIG.It is necessary to consider the OCL when studying the large-disturbance stability of the power system.展开更多
基金the National Natural Science Foundation of China (60532030).
文摘When a new user accesses the CDMA system, the load will change drastically, and therefore, the advanced outer loop power control (OLPC) technology has to be adopted to enrich the target signal interference ratio (Silt) and improve the system performance. The existing problems about DS-CDMA outer loop power control for multi-service are introduced and the power control theoretical model is analyzed. System simulation is adopted on how to obtain the theoretical performance and parameter optimization of the power control algorithm. The OLPC algorithm is improved and the performance comparisons between the old algorithm and the improved algorithm are given. The results show good performance of the improved OLPC algorithm and prove the validity of the improved method for multi-service.
文摘An outer loop power control algorithm based on triangle norm(t-norm) information fusion technology is proposed in this paper.According to the difference between block error rate and bit error rate with target values,the membership function calculation and level dividing of the two differences are dealt with.And then t-norm operator is used to fuse the two membership function values to determine the adjustment step-size.The algorithm can acquire the optimal adjustment step-size in the light of the channel status and avoid the overshoot phenomenon of the existing outer power control methods.As a result,the block error rate can converge to the target value quickly.Experiment results verify the excellent property of the algorithm.
基金supported by the National Natural Science Foundation of China(No.U2066602)。
文摘This letter studies large-disturbance stability of the power system with a synchronous generator(SG)and a converter-interfaced generation(CIG)connected to infinite bus.The power system is multi-timescale and first simplified.It is shown that the boundary of region of attraction(ROA)of the simplified model is composed of stable manifolds of unstable equilibrium point(UEP)or semi-singular point(SSP),named anchor points,and singular surface pieces.The type of anchor point determines the dominant instability pattern of the power system.When the anchor point is UEP or SSP,the dominant instability pattern is the instability of rotor angle of SG or the instability of phase-locked loop and outer control loop(OCL)of CIG,respectively.Transition of dominant instability pattern can be analyzed with the relative position relationship between UEP and SSP.The effect of OCL is discussed.When the OCL is activated,the ROA becomes smaller and the system is more prone to instability of CIG.It is necessary to consider the OCL when studying the large-disturbance stability of the power system.