For an odd prime p,we give a criterion for finite p-groups whose nonnormal subgroups are metacyclic,and based on the criterion,the p-groups whose nonnormal subgroups are metacyclic are classified up to isomorphism.Thi...For an odd prime p,we give a criterion for finite p-groups whose nonnormal subgroups are metacyclic,and based on the criterion,the p-groups whose nonnormal subgroups are metacyclic are classified up to isomorphism.This solves a problem proposed by Berkovich.展开更多
In this paper, groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 ale classified. It turns out that if p 〉 2, n≥ 5, then the classification of groups of order p^n in w...In this paper, groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 ale classified. It turns out that if p 〉 2, n≥ 5, then the classification of groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 and the classification of groups of order p^n with a cyclic subgroup of index p2 are the same.展开更多
Finite p-groups whose subgroups of given order are isomorphic and minimal non-abelian are classified. In addition, two results on a chain condition of At-groups are improved.
In this paper, the author characterizes the subgroups of a finite metacyclic group K by building a one to one correspondence between certain 3-tuples(k, l, β) ∈ N3 and all the subgroups of K. The results are applied...In this paper, the author characterizes the subgroups of a finite metacyclic group K by building a one to one correspondence between certain 3-tuples(k, l, β) ∈ N3 and all the subgroups of K. The results are applied to compute some subgroups of K as well as to study the structure and the number of p-subgroups of K, where p is a fixed prime number. In addition, the author gets a factorization of K, and then studies the metacyclic p-groups, gives a different classification, and describes the characteristic subgroups of a given metacyclic p-group when p ≥ 3. A "reciprocity" relation on enumeration of subgroups of a metacyclic group is also given.展开更多
Following Blackburn, Deaconescu and Mann, a group G is called an equilibrated group if for any subgroups H,K of G with HK = KH, either H≤NG(K) or K≤NG(H). Continuing their work and based on the classification of met...Following Blackburn, Deaconescu and Mann, a group G is called an equilibrated group if for any subgroups H,K of G with HK = KH, either H≤NG(K) or K≤NG(H). Continuing their work and based on the classification of metacyclic p-groups given by Newman and Xu, we give a complete classification of 2-generator equilibrated p-groups in this note.展开更多
Let p be a prime and F be a finite field of characteristic p.Suppose that FG is the group algebra of the finite p-group G over the field F.Let V(FG)denote the group of normalized units in FG and let V_(*)(FG)denote th...Let p be a prime and F be a finite field of characteristic p.Suppose that FG is the group algebra of the finite p-group G over the field F.Let V(FG)denote the group of normalized units in FG and let V_(*)(FG)denote the unitary subgroup of V(FG).If p is odd,then the order of V_(*)(FG)is|F|^((|G-1)/2).However,the case p=2 still is open.In this paper,the order of V*(FG)is computed when G is a nonabelian 2-group given by a central extension of the form 1→Z_(2^(n))×Z_(2^(m))→G→Z_(2)×…×Z_(2)→1 and G'≌Z_(2),n,m≥1.Furthermore,a conjecture is confirmed,i.e.,the order of V_(*)(FG)can be divisible by|F|^(1/2(|G|+|Ω1(G)|)-1),where Ω_(1)(G)={g∈G|g^(2)=1}.展开更多
Let G be a finite group and |G| = pn, p be a prime. For 0 m n, sm(G) denotes the number of subgroups of of order pm of G. Loo-Keng Hua and Hsio-Fu Tuan have ever conjectured: for an arbitrary finite p-group G, if p &g...Let G be a finite group and |G| = pn, p be a prime. For 0 m n, sm(G) denotes the number of subgroups of of order pm of G. Loo-Keng Hua and Hsio-Fu Tuan have ever conjectured: for an arbitrary finite p-group G, if p > 2, then sm(G) ≡ 1, 1 + p, 1 + p + p2 or 1 + p + 2p2 (mod p3). In this paper, we investigate the conjecture, and give some p-groups in which the conjecture holds and some examples in which the conjecture does not hold.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11771258 and 11471198)。
文摘For an odd prime p,we give a criterion for finite p-groups whose nonnormal subgroups are metacyclic,and based on the criterion,the p-groups whose nonnormal subgroups are metacyclic are classified up to isomorphism.This solves a problem proposed by Berkovich.
基金supported by the National Natural Science Foundation of China(No.10671114)the ShanxiProvincial Natural Science Foundation of China(No.2008012001)the Returned Abroad-StudentFund of Shanxi Province(No.[2007]13-56)
文摘In this paper, groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 ale classified. It turns out that if p 〉 2, n≥ 5, then the classification of groups of order p^n in which the number of subgroups of possible order is less than or equal to p3 and the classification of groups of order p^n with a cyclic subgroup of index p2 are the same.
文摘Finite p-groups whose subgroups of given order are isomorphic and minimal non-abelian are classified. In addition, two results on a chain condition of At-groups are improved.
基金the National Natural Science Foundation of China(No.11331006)。
文摘In this paper, the author characterizes the subgroups of a finite metacyclic group K by building a one to one correspondence between certain 3-tuples(k, l, β) ∈ N3 and all the subgroups of K. The results are applied to compute some subgroups of K as well as to study the structure and the number of p-subgroups of K, where p is a fixed prime number. In addition, the author gets a factorization of K, and then studies the metacyclic p-groups, gives a different classification, and describes the characteristic subgroups of a given metacyclic p-group when p ≥ 3. A "reciprocity" relation on enumeration of subgroups of a metacyclic group is also given.
基金This work was partially supported by the National Natural Science Foundation of China (Grant No. 10671114)the Natural Science Foundation of Shanxi Province (Grant No. 20051007)
文摘Following Blackburn, Deaconescu and Mann, a group G is called an equilibrated group if for any subgroups H,K of G with HK = KH, either H≤NG(K) or K≤NG(H). Continuing their work and based on the classification of metacyclic p-groups given by Newman and Xu, we give a complete classification of 2-generator equilibrated p-groups in this note.
基金supported by National Natural Science Foundation of China(Grant No.12171142)。
文摘Let p be a prime and F be a finite field of characteristic p.Suppose that FG is the group algebra of the finite p-group G over the field F.Let V(FG)denote the group of normalized units in FG and let V_(*)(FG)denote the unitary subgroup of V(FG).If p is odd,then the order of V_(*)(FG)is|F|^((|G-1)/2).However,the case p=2 still is open.In this paper,the order of V*(FG)is computed when G is a nonabelian 2-group given by a central extension of the form 1→Z_(2^(n))×Z_(2^(m))→G→Z_(2)×…×Z_(2)→1 and G'≌Z_(2),n,m≥1.Furthermore,a conjecture is confirmed,i.e.,the order of V_(*)(FG)can be divisible by|F|^(1/2(|G|+|Ω1(G)|)-1),where Ω_(1)(G)={g∈G|g^(2)=1}.
基金supported by National Natural Science Foundation of China (Grant No. 10671114)the Natural Science Foundation of Shanxi Province (Grant No. 2008012001)the Returned Abroad-Student Fund of Shanxi Province (Grant No. [2007]13-56)
文摘Let G be a finite group and |G| = pn, p be a prime. For 0 m n, sm(G) denotes the number of subgroups of of order pm of G. Loo-Keng Hua and Hsio-Fu Tuan have ever conjectured: for an arbitrary finite p-group G, if p > 2, then sm(G) ≡ 1, 1 + p, 1 + p + p2 or 1 + p + 2p2 (mod p3). In this paper, we investigate the conjecture, and give some p-groups in which the conjecture holds and some examples in which the conjecture does not hold.