Objective:This study aimed to assess the burden and psychosocial impact of spinal cord injury on the immediate caregivers at a tertiary health facility in Benin City,Edo State.Materials and Methods:A descriptive cross...Objective:This study aimed to assess the burden and psychosocial impact of spinal cord injury on the immediate caregivers at a tertiary health facility in Benin City,Edo State.Materials and Methods:A descriptive cross-sectional survey design was adopted among 73 family caregivers in the neurological ward of a tertiary health facility using a structured questionnaire as instrument of data collection.Data collected were analyzed using descriptive statistics and multiple logistic regression.Results:Findings revealed that an overall mean of 2.73 indicates that the burden on the caregivers was moderate with a moderate psychological impact(m=2.88)and a high sociological impact(m=3.12).Factors affecting the caregiving provided by immediate caregivers include social and household responsibilities(94.5%),financial situation(89.0%),family support(83.6%),and health status of the caregiver(80.8%).Age(odds ratio[OR]=5.67,95%confidence interval[CI]:1.23-27.17,P=0.027),education(OR=3.75,95%CI:1.05-13.39,P=0.041),and“others”(spouses,siblings,friends,or extended family members)(OR=3.167,95%CI:1.583-6.337,P=0.001)were predictors for high psychological impact while education(OR=0.074;95%CI:0.015-0.370,P=0.001)and caregiving role(OR=3.167;95%CI:0.1.583-6.337,P=0.001)high sociological impact.Conclusion:Majority of the caregivers experience moderate burden,moderate psychological impact,and high sociological impact.Understanding these factors is essential for developing targeted interventions and support services to address the unique needs of caregivers and mitigate the burden of caregiving on their psychosocial health.展开更多
Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavio...Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice.Mice were randomly divided into four groups:sham,controlled cortical impact only,adeno-associated virus(AAV)-green fluorescent protein,and AAV-shEndorepellin-green fluorescent protein groups.In the controlled cortical impact model,the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+proliferating endothelial cells and the functional microvessel density in mouse brain.These changes resulted in improved neurological function compared with controlled cortical impact mice.Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein.Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization,which may further improve neurobehavioral outcomes.Furthermore,an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control.Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor-and angiopoietin-1-related signaling pathways.展开更多
While animal models of controlled cortical impact often display short-term motor dysfunction after injury, histological examinations do not show severe cortical damage. Thus, this model requires further improvement. M...While animal models of controlled cortical impact often display short-term motor dysfunction after injury, histological examinations do not show severe cortical damage. Thus, this model requires further improvement. Mice were subjected to injury at three severities using a Pin-Point^(TM)-controlled cortical impact device to establish secondary brain injury mouse models. Twenty-four hours after injury, hematoxylin-eosin staining, Fluoro-Jade B histofluorescence, and immunohistochemistry were performed for brain slices. Compared to the uninjured side, we observed differences of histopathological findings, neuronal degeneration, and glial cell number in the CA2 and CA3 regions of the hippocampus on the injured side. The Morris water maze task and beam-walking test verified long-term(14–28 days) spatial learning/memory and motor balance. To conclude, the histopathological responses were positively correlated with the degree of damage,as were the long-term behavioral manifestations after controlled cortical impact. All animal procedures were approved by the Institutional Animal Care and Use Committee at Shanghai Jiao Tong University School of Medicine.展开更多
Fluid percussion-induced traumatic brain injury models have been widely used in experimental research for years. In an experiment, the stability of impaction is inevitably affected by factors such as the appearance of...Fluid percussion-induced traumatic brain injury models have been widely used in experimental research for years. In an experiment, the stability of impaction is inevitably affected by factors such as the appearance of liquid spikes. Management of impact pressure is a crucial factor that determines the stability of these models, and direction of impact control is another basic element. To improve experimental stability, we calculated a pressure curve by generating repeated impacts using a fluid percussion device at different pendulum angles. A stereotactic frame was used to control the direction of impact. We produced stable and reproducible models, including mild, moderate, and severe traumatic brain injury, using the MODEL01-B device at pendulum angles of 6°, 11° and 13°, with corresponding impact force values of 1.0 ± 0.11 atm(101.32 ± 11.16 k Pa), 2.6 ± 0.16 atm(263.44 ± 16.21 k Pa), and 3.6 ± 0.16 atm(364.77 ± 16.21 k Pa), respectively. Behavioral tests, hematoxylin-eosin staining, and magnetic resonance imaging revealed that models for different degrees of injury were consistent with the clinical properties of mild, moderate, and severe craniocerebral injuries. Using this method, we established fluid percussion models for different degrees of injury and stabilized pathological features based on precise power and direction control.展开更多
The study of brain function in the presence of pain and injury is a rapidly expanding field of experimental research.Clinically,the presence of pain and injury is often accompanied by reports of behavioural change and...The study of brain function in the presence of pain and injury is a rapidly expanding field of experimental research.Clinically,the presence of pain and injury is often accompanied by reports of behavioural change and altered cognition.Even in a highly controlled environment such as the surgical operating theatre postoperative behavioural changes including posttraumatic stress disorder,depression,chronic fatigue,展开更多
Neck injury is a severe problem in traffic accidents.While most studies are focused on the neck injury in rear and front impacts,few are conducted in side impact.This study focuses on the difference of neck injury und...Neck injury is a severe problem in traffic accidents.While most studies are focused on the neck injury in rear and front impacts,few are conducted in side impact.This study focuses on the difference of neck injury under different postures and the difference of 7 cervical vertebras under the same posture using the method of prescribed structure motion(PSM).The analytical results show that the maximum changes of mean force and mean moment of 7 cervical vertebras under 8 different postures are 20% and 47% respectively.The variation of each cervical vertebra is different under different neck postures.Up cervical vertebras (C1-C4) and low cervical vertebras (C5-C7) suffer different forces and moments under the same neck posture.Generally speaking,No.6 (neck right leaning 40°) is the posture with lowest neck injury risk.展开更多
Traumatic spinal cord injury(SCI)remains a devastating neurological disorder leading to severe consequences for the affected individual and their families.Further,socioeconomic implications should not be neglected a...Traumatic spinal cord injury(SCI)remains a devastating neurological disorder leading to severe consequences for the affected individual and their families.Further,socioeconomic implications should not be neglected as well.Although life expectancy after SCI increased tremendously,therapeutic treatment options remain limited.展开更多
背景:由身体接触性运动或交通事故造成的脑震荡远比人们想象的更为严重与常见,近年来引起了媒体、医学界及体育界的广泛关注与高度重视。目的:采用文献计量学方法对有限元方法在脑震荡领域的研究热点与趋势进行可视化分析,从而为中国在...背景:由身体接触性运动或交通事故造成的脑震荡远比人们想象的更为严重与常见,近年来引起了媒体、医学界及体育界的广泛关注与高度重视。目的:采用文献计量学方法对有限元方法在脑震荡领域的研究热点与趋势进行可视化分析,从而为中国在该领域的研究提供一定的参考。方法:基于Web of Science核心集数据库进行文献检索,检索主题词策略为(TS=(Concussion)) AND TS=(Finite element),利用CiteSpace 6.2.R4可视化工具对纳入文献的作者、国家、机构、关键词及被引文献等进行可视化分析。结果与结论:(1)共计纳入215篇文献,发文量与被引量总体上呈上升趋势;学科分布涉及生物医学工程、生物物理学、运动科学、临床神经学及神经科学等学科,呈现多学科交叉融合的趋势;发文量最多的作者是来自爱尔兰都柏林大学的Gilchrist M,发文量最多的机构是渥太华大学,发文量最多的国家是美国。(2)通过关键词分析发现研究的热点聚焦于脑损伤模型的建立用来模拟和预测脑震荡的损伤;脑震荡损伤机制的解析;防护设备和装置的优化设计。(3)通过文献共被引分析发现脑损伤的预测与评估是该领域的知识基础亦是研究热点。(4)有限元方法运用在脑震荡领域的研究热点主要围绕头部损伤预测为主题展开,结合探索大脑损伤机制以及防护装备的设计与改进。(5)随着人工智能与材料学的进步,未来有限元方法在脑震荡损伤领域的研究热点将集中于脑损伤模型、测试方法与防护装备的改进。展开更多
Traumatic brain injury(TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the...Traumatic brain injury(TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the development of functional impairments. However, there are currently no effective therapeutic interventions that improve brain outcomes following TBI. As a result, a number of experimental TBI models have been developed to recapitulate TBI injury mechanisms and to test the efficacy of potential therapeutics. The pig model has recently come to the forefront as the pig brain is closer in size, structure, and composition to the human brain compared to traditional rodent models, making it an ideal large animal model to study TBI pathophysiology and functional outcomes. This review will focus on the shared characteristics between humans and pigs that make them ideal for modeling TBI and will review the three most common pig TBI models–the diffuse axonal injury, the controlled cortical impact, and the fluid percussion models. It will also review current advances in functional outcome assessment measures and other non-invasive, translational TBI detection and measurement tools like biomarker analysis and magnetic resonance imaging. The use of pigs as TBI models and the continued development and improvement of translational assessment modalities have made significant contributions to unraveling the complex cascade of TBI sequela and provide an important means to study potential clinically relevant therapeutic interventions.展开更多
文摘Objective:This study aimed to assess the burden and psychosocial impact of spinal cord injury on the immediate caregivers at a tertiary health facility in Benin City,Edo State.Materials and Methods:A descriptive cross-sectional survey design was adopted among 73 family caregivers in the neurological ward of a tertiary health facility using a structured questionnaire as instrument of data collection.Data collected were analyzed using descriptive statistics and multiple logistic regression.Results:Findings revealed that an overall mean of 2.73 indicates that the burden on the caregivers was moderate with a moderate psychological impact(m=2.88)and a high sociological impact(m=3.12).Factors affecting the caregiving provided by immediate caregivers include social and household responsibilities(94.5%),financial situation(89.0%),family support(83.6%),and health status of the caregiver(80.8%).Age(odds ratio[OR]=5.67,95%confidence interval[CI]:1.23-27.17,P=0.027),education(OR=3.75,95%CI:1.05-13.39,P=0.041),and“others”(spouses,siblings,friends,or extended family members)(OR=3.167,95%CI:1.583-6.337,P=0.001)were predictors for high psychological impact while education(OR=0.074;95%CI:0.015-0.370,P=0.001)and caregiving role(OR=3.167;95%CI:0.1.583-6.337,P=0.001)high sociological impact.Conclusion:Majority of the caregivers experience moderate burden,moderate psychological impact,and high sociological impact.Understanding these factors is essential for developing targeted interventions and support services to address the unique needs of caregivers and mitigate the burden of caregiving on their psychosocial health.
基金supported by the National Natural Science Foundation of China,Nos.81801236(to ZX),81974189(to HT)a grant from Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,No.ynlc201719(to QZ).
文摘Endorepellin plays a key role in the regulation of angiogenesis,but its effects on angiogenesis after traumatic brain injury are unclear.This study explored the effects of endorepellin on angiogenesis and neurobehavioral outcomes after traumatic brain injury in mice.Mice were randomly divided into four groups:sham,controlled cortical impact only,adeno-associated virus(AAV)-green fluorescent protein,and AAV-shEndorepellin-green fluorescent protein groups.In the controlled cortical impact model,the transduction of AAV-shEndorepellin-green fluorescent protein downregulated endorepellin while increasing the number of CD31+/Ki-67+proliferating endothelial cells and the functional microvessel density in mouse brain.These changes resulted in improved neurological function compared with controlled cortical impact mice.Western blotting revealed increased expression of vascular endothelial growth factor and angiopoietin-1 in mice treated with AAV-shEndorepellin-green fluorescent protein.Synchrotron radiation angiography showed that endorepellin downregulation promoted angiogenesis and increased cortical neovascularization,which may further improve neurobehavioral outcomes.Furthermore,an in vitro study showed that downregulation of endorepellin increased tube formation by human umbilical vein endothelial cells compared with a control.Mechanistic analysis found that endorepellin downregulation may mediate angiogenesis by activating vascular endothelial growth factor-and angiopoietin-1-related signaling pathways.
基金supported by the National Natural Science Foundation of China,No.81771332,81571184,81070990(all to CLZ)the Shanghai Key Medical Discipline for Critical Care Medicine of China,No.2017zz02017(to CLZ)+1 种基金the Key Discipline Construction Project of Pudong Health Bureau of Shanghai of China,No.PWZxk2017-23,PWYgf2018-05(both to CLZ)the Outstanding Leaders Training Program of Pudong Health Bureau of Shanghai of China,No.PWR12018-07(to CLZ)
文摘While animal models of controlled cortical impact often display short-term motor dysfunction after injury, histological examinations do not show severe cortical damage. Thus, this model requires further improvement. Mice were subjected to injury at three severities using a Pin-Point^(TM)-controlled cortical impact device to establish secondary brain injury mouse models. Twenty-four hours after injury, hematoxylin-eosin staining, Fluoro-Jade B histofluorescence, and immunohistochemistry were performed for brain slices. Compared to the uninjured side, we observed differences of histopathological findings, neuronal degeneration, and glial cell number in the CA2 and CA3 regions of the hippocampus on the injured side. The Morris water maze task and beam-walking test verified long-term(14–28 days) spatial learning/memory and motor balance. To conclude, the histopathological responses were positively correlated with the degree of damage,as were the long-term behavioral manifestations after controlled cortical impact. All animal procedures were approved by the Institutional Animal Care and Use Committee at Shanghai Jiao Tong University School of Medicine.
基金supported by a grant from the International S cience and Technology Cooperation Projects of China,No.2011DFG33430
文摘Fluid percussion-induced traumatic brain injury models have been widely used in experimental research for years. In an experiment, the stability of impaction is inevitably affected by factors such as the appearance of liquid spikes. Management of impact pressure is a crucial factor that determines the stability of these models, and direction of impact control is another basic element. To improve experimental stability, we calculated a pressure curve by generating repeated impacts using a fluid percussion device at different pendulum angles. A stereotactic frame was used to control the direction of impact. We produced stable and reproducible models, including mild, moderate, and severe traumatic brain injury, using the MODEL01-B device at pendulum angles of 6°, 11° and 13°, with corresponding impact force values of 1.0 ± 0.11 atm(101.32 ± 11.16 k Pa), 2.6 ± 0.16 atm(263.44 ± 16.21 k Pa), and 3.6 ± 0.16 atm(364.77 ± 16.21 k Pa), respectively. Behavioral tests, hematoxylin-eosin staining, and magnetic resonance imaging revealed that models for different degrees of injury were consistent with the clinical properties of mild, moderate, and severe craniocerebral injuries. Using this method, we established fluid percussion models for different degrees of injury and stabilized pathological features based on precise power and direction control.
基金supported by a grant from the NWG Macintosh Memorial Fundsupported by a scholarship from the Australian Pain SocietyAustralian Pain Relief Association
文摘The study of brain function in the presence of pain and injury is a rapidly expanding field of experimental research.Clinically,the presence of pain and injury is often accompanied by reports of behavioural change and altered cognition.Even in a highly controlled environment such as the surgical operating theatre postoperative behavioural changes including posttraumatic stress disorder,depression,chronic fatigue,
基金Sponsored by the National High Technology Research and Development Program of China("863"Program) (2006AA110102)
文摘Neck injury is a severe problem in traffic accidents.While most studies are focused on the neck injury in rear and front impacts,few are conducted in side impact.This study focuses on the difference of neck injury under different postures and the difference of 7 cervical vertebras under the same posture using the method of prescribed structure motion(PSM).The analytical results show that the maximum changes of mean force and mean moment of 7 cervical vertebras under 8 different postures are 20% and 47% respectively.The variation of each cervical vertebra is different under different neck postures.Up cervical vertebras (C1-C4) and low cervical vertebras (C5-C7) suffer different forces and moments under the same neck posture.Generally speaking,No.6 (neck right leaning 40°) is the posture with lowest neck injury risk.
文摘Traumatic spinal cord injury(SCI)remains a devastating neurological disorder leading to severe consequences for the affected individual and their families.Further,socioeconomic implications should not be neglected as well.Although life expectancy after SCI increased tremendously,therapeutic treatment options remain limited.
文摘背景:由身体接触性运动或交通事故造成的脑震荡远比人们想象的更为严重与常见,近年来引起了媒体、医学界及体育界的广泛关注与高度重视。目的:采用文献计量学方法对有限元方法在脑震荡领域的研究热点与趋势进行可视化分析,从而为中国在该领域的研究提供一定的参考。方法:基于Web of Science核心集数据库进行文献检索,检索主题词策略为(TS=(Concussion)) AND TS=(Finite element),利用CiteSpace 6.2.R4可视化工具对纳入文献的作者、国家、机构、关键词及被引文献等进行可视化分析。结果与结论:(1)共计纳入215篇文献,发文量与被引量总体上呈上升趋势;学科分布涉及生物医学工程、生物物理学、运动科学、临床神经学及神经科学等学科,呈现多学科交叉融合的趋势;发文量最多的作者是来自爱尔兰都柏林大学的Gilchrist M,发文量最多的机构是渥太华大学,发文量最多的国家是美国。(2)通过关键词分析发现研究的热点聚焦于脑损伤模型的建立用来模拟和预测脑震荡的损伤;脑震荡损伤机制的解析;防护设备和装置的优化设计。(3)通过文献共被引分析发现脑损伤的预测与评估是该领域的知识基础亦是研究热点。(4)有限元方法运用在脑震荡领域的研究热点主要围绕头部损伤预测为主题展开,结合探索大脑损伤机制以及防护装备的设计与改进。(5)随着人工智能与材料学的进步,未来有限元方法在脑震荡损伤领域的研究热点将集中于脑损伤模型、测试方法与防护装备的改进。
文摘Traumatic brain injury(TBI) is a major contributor of long-term disability and a leading cause of death worldwide. A series of secondary injury cascades can contribute to cell death, tissue loss, and ultimately to the development of functional impairments. However, there are currently no effective therapeutic interventions that improve brain outcomes following TBI. As a result, a number of experimental TBI models have been developed to recapitulate TBI injury mechanisms and to test the efficacy of potential therapeutics. The pig model has recently come to the forefront as the pig brain is closer in size, structure, and composition to the human brain compared to traditional rodent models, making it an ideal large animal model to study TBI pathophysiology and functional outcomes. This review will focus on the shared characteristics between humans and pigs that make them ideal for modeling TBI and will review the three most common pig TBI models–the diffuse axonal injury, the controlled cortical impact, and the fluid percussion models. It will also review current advances in functional outcome assessment measures and other non-invasive, translational TBI detection and measurement tools like biomarker analysis and magnetic resonance imaging. The use of pigs as TBI models and the continued development and improvement of translational assessment modalities have made significant contributions to unraveling the complex cascade of TBI sequela and provide an important means to study potential clinically relevant therapeutic interventions.