Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on mult...Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. The transmitter extracts semantic features for two users separately and then effectively fuses them for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance their performance. Considering the different channel state information(CSI) of both users over DBC,a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel.Experimental results show that the proposed system outperforms the traditional broadcasting schemes.展开更多
With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two...With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two-user cooperative multi-antenna broadcast channel.We focus on the issue that the deteriorated reliability and undetectability are mainly affected by the transmission power.To tackle this issue,we design a scheme based on beamforming to increase the reliability and undetectability of wireless covert communication in the multi-antenna broadcast channel.We first modeled and analyzed the cooperative multi-antenna broadcasting system,and put forward the target question.Then we use the SCA(successive convex approximation)algorithm to transform the target problem into a series of convex subproblems.Then the convex problems are solved and the covert channel capacity is calculated.In order to verify the effectiveness of the scheme,we conducted simulation verification.The simulation results show that the proposed beamforming scheme can effectively improve the reliability and undetectability of covert communication in multi-antenna broadcast channels.展开更多
We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adapt...We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.展开更多
This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication...This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.展开更多
To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and co...To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.展开更多
In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environ...In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.展开更多
With the development of wireless mobile communication technology,the demand for wireless communication rate and frequency increases year by year.Existing wireless mobile communication frequency tends to be saturated,w...With the development of wireless mobile communication technology,the demand for wireless communication rate and frequency increases year by year.Existing wireless mobile communication frequency tends to be saturated,which demands for new solutions.Terahertz(THz)communication has great potential for the future mobile communications(Beyond 5G),and is also an important technique for the high data rate transmission in spatial information network.THz communication has great application prospects in military-civilian integration and coordinated development.In China,important breakthroughs have been achieved for the key techniques of THz high data rate communications,which is practically keeping up with the most advanced technological level in the world.Therefore,further intensifying efforts on the development of THz communication have the strategic importance for China in leading the development of future wireless communication techniques and the standardization process of Beyond 5G.This paper analyzes the performance of the MIMO channel in the Terahertz(THz)band and a discrete mathematical method is used to propose a novel channel model.Then,a channel capacity model is proposed by the combination of path loss and molecular absorption in the THz band based on the CSI at the receiver.Simulation results show that the integration of MIMO in the THz band gives better data rate and channel capacity as compared with a single channel.展开更多
To meet the demands for the explosive growth of mobile data rates and scarcity of spectrum resources in the near future,the terahertz(THz)band has widely been regarded as a key enabler for the upcoming beyond fifth-ge...To meet the demands for the explosive growth of mobile data rates and scarcity of spectrum resources in the near future,the terahertz(THz)band has widely been regarded as a key enabler for the upcoming beyond fifth-generation(B5G)wireless communications.An accurate THz channel model is crucial for the design and deployment of the THz wireless communication systems.In this paper,a three-dimensional(3-D)dynamic indoor THz channel model is proposed by means of combining deterministic and stochastic modeling approaches.Clusters are randomly distributed in the indoor environment and each ray is characterized with consideration of molecular absorption and diffuse scattering.Moreover,we present the dynamic generation procedure of the channel impulse responses(CIRs).Statistical properties are investigated to indicate the non-stationarity and feasibility of the proposed model.Finally,by comparing with delay spread and K-factor results from the measurements,the utility of the proposed channel model is verified.展开更多
The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies ...The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies about 5G wireless systems on high speed railways (HSR) often utilize ideal channel parameters and are usually based on simple scenarios. In this paper, we evaluate the down- link throughput of 5G HSR communication systems on three typical scenarios including urban, cutting and viaduct with three different channel estimators. The channel parameters of each scenario are generated with tapped delay line (TDL) models through ray-tracing sim- ulations, which can be considered as a good match to practical situations. The channel estimators including least square (LS), linear minimum mean square error (LMMSE), and our proposed historical information based ba- sis expansion model (HiBEM). We analyze the performance of the HiBEM estimator in terms of mean square error (MSE) and evaluate the system throughputs with different channel estimates over each scenario. Simulation results are then provided to corroborate our proposed studies. It is shown that our HiBEM estimator outperforms other estimators and that the sys-tem throughput can reach the highest point in the viaduct scenario.展开更多
In underground mines, visible light communication(VLC) system is a promising method to realize effective communication,which supports communication and illumination at the same time. Therefore, adequate research of un...In underground mines, visible light communication(VLC) system is a promising method to realize effective communication,which supports communication and illumination at the same time. Therefore, adequate research of underlying physical propagation phenomenon should be carried out to realize VLC system in underground mines. To design VLC system and evaluate its performance, accurate and efficient channel models, including large-scale fading and scattering characteristics, are needed to be established. However,the characteristics of the underlying VLC channels about fading and scattering have not been sufficiently investigated yet. In this paper, a path loss channel model, based on the recursive model, is proposed precisely. Its path loss exponent is determined by three different trajectories, which is studied in the mining roadway and working face environment. Besides, the shadowing effect for VLC has been modelled by a Bimodal Gaussian distribution in underground mines. Considering the number of transmitters in line-of-sight(Lo S) as well as non-line-of-sight(NLo S) scenarios,our simulation illustrates the fact that, as the curve fitting technique is employed, the path loss displays a linear behavior in log-domain.The path loss expression is derived, it is related to the distance. Finally, root mean square(RMS) delay spread and Mie scattering in underground mines are analyzed.展开更多
The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and t...The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s-Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.展开更多
Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluat...Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluates the corresponding performance in terms of the tag activation distance and the system capacity.Specifically,we derive the activation probabilities of the tag in the case of single-antenna and multi-antenna transmitters.Besides,we obtain the capacity expressions for the ambient backscatter communication system with beamforming and illustrate the power allocation that maximizes the system capacity when the tag is activated.Finally,simulation results are provided to corroborate our proposed studies.展开更多
The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We pro...The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.展开更多
This paper investigates the channel diversity problem in high frequency(HF) communication systems. Due to the limited HF spectrum resources, a HF communication system with shared channels is considered, where each use...This paper investigates the channel diversity problem in high frequency(HF) communication systems. Due to the limited HF spectrum resources, a HF communication system with shared channels is considered, where each user equipment(UE) has individual communication demand. In order to maximize the communication probability of the whole system, a matching-potential game framework is designed. In detail, the channel diversity problem is decomposed into two sub-problems. One is channel-transmitter matching problem, which can be formulated as a many-to-one matching game. The other is the transmitter allocation problem which decides the transmission object that each transmitter communicates with under channel-transmitter matching result, and this sub-problem can be modeled as a potential game. A multiple round stable matching algorithm(MRSMA) is proposed, which obtains a stable matching result for the first sub-problem, and a distributed BR-based transmitter allocation algorithm(DBRTAA) is designed to reach Nash Equilibrium(NE) of the second sub-problem. Simulation results verify the effectiveness and superiority of the proposed method.展开更多
This paper derives a non-stationary multiple-input multiple-output(MIMO) from the one-ring scattering model. The proposed channel model characterizes vehicular radio propagation channels with considerations of moving ...This paper derives a non-stationary multiple-input multiple-output(MIMO) from the one-ring scattering model. The proposed channel model characterizes vehicular radio propagation channels with considerations of moving base and mobile stations, which makes the angle of arrivals(AOAs) along with the angle of departures(AODs) time-variant. We introduce the methodology of including the time-variant impacts when characterizing non-stationary radio propagation channels through the geometrical channel modelling approach. We analyze the statistical properties of the proposed channel model including the local time-variant autocorrelation function(ACF) and the space cross-correlation functions(CCFs). We show that the model developed in this paper for non-stationary scenarios includes the existing one-ring wide-sense stationary channel model as its special case.展开更多
Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With D...Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.展开更多
We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used a...We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used as the quantum channel.Since these states are unchanged through the collective dephasing noisy channel,the effect of the channel noise can be perfectly overcome.Simultaneously,the security against some usual attacks canbe ensured by utilizing the various checking procedures.Furthermore,these two schemes are feasible with present-daytechnique.展开更多
This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited commu...This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.展开更多
In past decades, there has been a growing interest in the discussion and study of using underwater acoustic channel as the physical layer for communication systems, ranging from point-to-point communications to underw...In past decades, there has been a growing interest in the discussion and study of using underwater acoustic channel as the physical layer for communication systems, ranging from point-to-point communications to underwater multicarrier modulation networks. A series of review papers were already available to provide a history of the development of the field until the end of the last decade. In this paper, we attempt to provide an overview of the key developments, both theoretical and applied, in the particular topics regarding multicarrier communication for underwater acoustic communication such as the channel and Doppler shift estimation, video and image transmission throw multicarrier techniques, etc. This paper also includes acoustic propagation properties in seawater and underwater acoustic channel representation.展开更多
The extremely limited bandwidth in underwater acoustic communication makes channel estimation using fewer pilot symbols more challenging. Iterative channel estimation( ICE) can be used to refine channel estimation wit...The extremely limited bandwidth in underwater acoustic communication makes channel estimation using fewer pilot symbols more challenging. Iterative channel estimation( ICE) can be used to refine channel estimation with limited number of pilots,by coupling the channel estimator with channel decoder. In this paper,various feedback strategies in ICE are discussed. The performance of a decision feedback based on the cost function is improved by modifying the design and another four feedback strategies are summarized,including hard/soft decision feedback and their threshold-controlled versions. Simulation results show that ICE can achieve impressive gains over the non-iterative receiver and the gains are more significant with fewer pilots. Furthermore,soft decision feedback outperforms hard decision feedback; while the feedback based on the cost function and soft decision feedback have quite close performance.展开更多
基金supported in part by National Key R&D Project of China (2023YFB2906201)the National Natural Science Foundation of China (62222111, 62125108 and 62431015)the Fundamental Research Funds for the Central Universities。
文摘Degraded broadcast channels(DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. The transmitter extracts semantic features for two users separately and then effectively fuses them for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance their performance. Considering the different channel state information(CSI) of both users over DBC,a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel.Experimental results show that the proposed system outperforms the traditional broadcasting schemes.
基金supported by the National Natural Science Foundation of China(Grants No.U1836104,61772281,61702235,61801073,61931004,62072250).
文摘With the gradual popularization of 5G communications,the application of multi-antenna broadcasting technology has become widespread.Therefore,this study aims to investigate the wireless covert communication in the two-user cooperative multi-antenna broadcast channel.We focus on the issue that the deteriorated reliability and undetectability are mainly affected by the transmission power.To tackle this issue,we design a scheme based on beamforming to increase the reliability and undetectability of wireless covert communication in the multi-antenna broadcast channel.We first modeled and analyzed the cooperative multi-antenna broadcasting system,and put forward the target question.Then we use the SCA(successive convex approximation)algorithm to transform the target problem into a series of convex subproblems.Then the convex problems are solved and the covert channel capacity is calculated.In order to verify the effectiveness of the scheme,we conducted simulation verification.The simulation results show that the proposed beamforming scheme can effectively improve the reliability and undetectability of covert communication in multi-antenna broadcast channels.
基金supported in part by the National Key R&D Project of China under Grant 2020YFA0712300National Natural Science Foundation of China under Grant NSFC-62231022,12031011supported in part by the NSF of China under Grant 62125108。
文摘We consider an image semantic communication system in a time-varying fading Gaussian MIMO channel,with a finite number of channel states.A deep learning-aided broadcast approach scheme is proposed to benefit the adaptive semantic transmission in terms of different channel states.We combine the classic broadcast approach with the image transformer to implement this adaptive joint source and channel coding(JSCC)scheme.Specifically,we utilize the neural network(NN)to jointly optimize the hierarchical image compression and superposition code mapping within this scheme.The learned transformers and codebooks allow recovering of the image with an adaptive quality and low error rate at the receiver side,in each channel state.The simulation results exhibit our proposed scheme can dynamically adapt the coding to the current channel state and outperform some existing intelligent schemes with the fixed coding block.
基金supported in part by the National Natural Science Foundation of China (61933007,62273087,U22A2044,61973102,62073180)the Shanghai Pujiang Program of China (22PJ1400400)+1 种基金the Royal Society of the UKthe Alexander von Humboldt Foundation of Germany。
文摘This paper concerns ultimately bounded output-feedback control problems for networked systems with unknown nonlinear dynamics. Sensor-to-observer signal transmission is facilitated over networks that has communication constraints.These transmissions are carried out over an unreliable communication channel. In order to enhance the utilization rate of measurement data, a buffer-aided strategy is novelly employed to store historical measurements when communication networks are inaccessible. Using the neural network technique, a novel observer-based controller is introduced to address effects of signal transmission behaviors and unknown nonlinear dynamics.Through the application of stochastic analysis and Lyapunov stability, a joint framework is constructed for analyzing resultant system performance under the introduced controller. Subsequently, existence conditions for the desired output-feedback controller are delineated. The required parameters for the observerbased controller are then determined by resolving some specific matrix inequalities. Finally, a simulation example is showcased to confirm method efficacy.
基金supported by the National Natural Science Foundation of China(61931015,62071335,62250024)the Natural Science Foundation of Hubei Province of China(2021CFA002)+1 种基金the Fundamental Research Funds for the Central Universities of China(2042022dx0001)the Science and Technology Program of Shenzhen(JCYJ20170818112037398).
文摘To reduce the negative impact of the power amplifier(PA)nonlinear distortion caused by the orthogonal frequency division multiplexing(OFDM)waveform with high peak-to-average power ratio(PAPR)in integrated radar and communication(RadCom)systems is studied,the channel estimation in passive sensing scenarios.Adaptive channel estimation methods are proposed based on different pilot patterns,considering nonlinear distortion and channel sparsity.The proposed methods achieve sparse channel results by manipulating the least squares(LS)frequency-domain channel estimation results to preserve the most significant taps.The decision-aided method is used to optimize the sparse channel results to reduce the effect of nonlinear distortion.Numerical results show that the channel estimation performance of the proposed methods is better than that of the conventional methods under different pilot patterns.In addition,the bit error rate performance in communication and passive radar detection performance show that the proposed methods have good comprehensive performance.
基金supported by National Natural Science Foundation of China(NSFC)(No.62101274 and 62101275)Natural Science Foundation of Jiangsu Province(BK20210640)Open Research Fund of National Mobile Communications Research Laboratory Southeast University under Grant 2021D03。
文摘In this paper,a statistical cluster-based simulation channel model with a finite number of sinusoids is proposed for depicting the multiple-input multiple-output(MIMO)communications in vehicleto-everything(V2X)environments.In the proposed sum-of-sinusoids(SoS)channel model,the waves that emerge from the transmitter undergo line-of-sight(LoS)and non-line-of-sight(NLoS)propagation to the receiver,which makes the model suitable for describing numerous V2X wireless communication scenarios for sixth-generation(6G).We derive expressions for the real and imaginary parts of the complex channel impulse response(CIR),which characterize the physical propagation characteristics of V2X wireless channels.The statistical properties of the real and imaginary parts of the complex CIRs,i.e.,autocorrelation functions(ACFs),Doppler power spectral densities(PSDs),cross-correlation functions(CCFs),and variances of ACFs and CCFs,are derived and discussed.Simulation results are generated and match those predicted by the underlying theory,demonstrating the accuracy of our derivation and analysis.The proposed framework and underlying theory arise as an efficient tool to investigate the statistical properties of 6G MIMO V2X communication systems.
基金Hallym University Research Fund,2019(HRF-201905-013).
文摘With the development of wireless mobile communication technology,the demand for wireless communication rate and frequency increases year by year.Existing wireless mobile communication frequency tends to be saturated,which demands for new solutions.Terahertz(THz)communication has great potential for the future mobile communications(Beyond 5G),and is also an important technique for the high data rate transmission in spatial information network.THz communication has great application prospects in military-civilian integration and coordinated development.In China,important breakthroughs have been achieved for the key techniques of THz high data rate communications,which is practically keeping up with the most advanced technological level in the world.Therefore,further intensifying efforts on the development of THz communication have the strategic importance for China in leading the development of future wireless communication techniques and the standardization process of Beyond 5G.This paper analyzes the performance of the MIMO channel in the Terahertz(THz)band and a discrete mathematical method is used to propose a novel channel model.Then,a channel capacity model is proposed by the combination of path loss and molecular absorption in the THz band based on the CSI at the receiver.Simulation results show that the integration of MIMO in the THz band gives better data rate and channel capacity as compared with a single channel.
基金the National Key R&D Program of China under Grant 2020YFB1804901the National Natural Science Foundation of China under Grant 61871035the National Defense Science and Technology Innovation Zone.
文摘To meet the demands for the explosive growth of mobile data rates and scarcity of spectrum resources in the near future,the terahertz(THz)band has widely been regarded as a key enabler for the upcoming beyond fifth-generation(B5G)wireless communications.An accurate THz channel model is crucial for the design and deployment of the THz wireless communication systems.In this paper,a three-dimensional(3-D)dynamic indoor THz channel model is proposed by means of combining deterministic and stochastic modeling approaches.Clusters are randomly distributed in the indoor environment and each ray is characterized with consideration of molecular absorption and diffuse scattering.Moreover,we present the dynamic generation procedure of the channel impulse responses(CIRs).Statistical properties are investigated to indicate the non-stationarity and feasibility of the proposed model.Finally,by comparing with delay spread and K-factor results from the measurements,the utility of the proposed channel model is verified.
基金supported by the National Natural Science Foundation of China(Grant Nos.61522109,61671253,61571037and 91738201)the Fundamental Research Funds for the Central Universities(No.2016JBZ006)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20150040and BK20171446)the Key Project of Natural Science Research of Higher Education Institutions of Jiangsu Province(No.15KJA510003)
文摘The fifth generation (5G) wireless communication is currently a hot research topic and wireless communication systems on high speed railways (HSR) are important applications of 5G technologies. Existing stud- ies about 5G wireless systems on high speed railways (HSR) often utilize ideal channel parameters and are usually based on simple scenarios. In this paper, we evaluate the down- link throughput of 5G HSR communication systems on three typical scenarios including urban, cutting and viaduct with three different channel estimators. The channel parameters of each scenario are generated with tapped delay line (TDL) models through ray-tracing sim- ulations, which can be considered as a good match to practical situations. The channel estimators including least square (LS), linear minimum mean square error (LMMSE), and our proposed historical information based ba- sis expansion model (HiBEM). We analyze the performance of the HiBEM estimator in terms of mean square error (MSE) and evaluate the system throughputs with different channel estimates over each scenario. Simulation results are then provided to corroborate our proposed studies. It is shown that our HiBEM estimator outperforms other estimators and that the sys-tem throughput can reach the highest point in the viaduct scenario.
基金support from the National Natural Science Foundation of China (Grant No. 61371110)Key R&D Program of Shandong Province (Grant No. 2016GGX101014)+1 种基金EU H2020 RISE TESTBED project (Grant No. 734325)the Fundamental Research Funds of Shandong University (No. 2017JC029)
文摘In underground mines, visible light communication(VLC) system is a promising method to realize effective communication,which supports communication and illumination at the same time. Therefore, adequate research of underlying physical propagation phenomenon should be carried out to realize VLC system in underground mines. To design VLC system and evaluate its performance, accurate and efficient channel models, including large-scale fading and scattering characteristics, are needed to be established. However,the characteristics of the underlying VLC channels about fading and scattering have not been sufficiently investigated yet. In this paper, a path loss channel model, based on the recursive model, is proposed precisely. Its path loss exponent is determined by three different trajectories, which is studied in the mining roadway and working face environment. Besides, the shadowing effect for VLC has been modelled by a Bimodal Gaussian distribution in underground mines. Considering the number of transmitters in line-of-sight(Lo S) as well as non-line-of-sight(NLo S) scenarios,our simulation illustrates the fact that, as the curve fitting technique is employed, the path loss displays a linear behavior in log-domain.The path loss expression is derived, it is related to the distance. Finally, root mean square(RMS) delay spread and Mie scattering in underground mines are analyzed.
基金Supported by the National High Technology Research and Development Program of China (2009AA093601-2)the National Defense Foundation Research (B2420110007)
文摘The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s-Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.
基金supported by National Natural Science Foundation of China(No.62101601)the Fundamental Research Funds for the Central Universities under Grant 2020JBM017Joint Key Project of National Natural Science Foundation of China(No.U22B2004)。
文摘Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluates the corresponding performance in terms of the tag activation distance and the system capacity.Specifically,we derive the activation probabilities of the tag in the case of single-antenna and multi-antenna transmitters.Besides,we obtain the capacity expressions for the ambient backscatter communication system with beamforming and illustrate the power allocation that maximizes the system capacity when the tag is activated.Finally,simulation results are provided to corroborate our proposed studies.
基金This research was supported by Science and Technology Research Project of Education Department of Jiangxi Province,China(Nos.GJJ2206701,GJJ2206717).
文摘The current resource allocation in 5G vehicular networks for mobile cloud communication faces several challenges,such as low user utilization,unbalanced resource allocation,and extended adaptive allocation time.We propose an adaptive allocation algorithm for mobile cloud communication resources in 5G vehicular networks to address these issues.This study analyzes the components of the 5G vehicular network architecture to determine the performance of different components.It is ascertained that the communication modes in 5G vehicular networks for mobile cloud communication include in-band and out-of-band modes.Furthermore,this study analyzes the single-hop and multi-hop modes in mobile cloud communication and calculates the resource transmission rate and bandwidth in different communication modes.The study also determines the scenario of one-way and two-way vehicle lane cloud communication network connectivity,calculates the probability of vehicle network connectivity under different mobile cloud communication radii,and determines the amount of cloud communication resources required by vehicles in different lane scenarios.Based on the communication status of users in 5G vehicular networks,this study calculates the bandwidth and transmission rate of the allocated channels using Shannon’s formula.It determines the adaptive allocation of cloud communication resources,introduces an objective function to obtain the optimal solution after allocation,and completes the adaptive allocation process.The experimental results demonstrate that,with the application of the proposed method,the maximum utilization of user communication resources reaches approximately 99%.The balance coefficient curve approaches 1,and the allocation time remains under 2 s.This indicates that the proposed method has higher adaptive allocation efficiency.
基金supported by the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province under Grant No. BK20160034in part by the National Natural Science Foundation of China under Grant No. 61671473 and No. 61631020in part by the Open Research Foundation of Science and Technology on Communication Networks Laboratory
文摘This paper investigates the channel diversity problem in high frequency(HF) communication systems. Due to the limited HF spectrum resources, a HF communication system with shared channels is considered, where each user equipment(UE) has individual communication demand. In order to maximize the communication probability of the whole system, a matching-potential game framework is designed. In detail, the channel diversity problem is decomposed into two sub-problems. One is channel-transmitter matching problem, which can be formulated as a many-to-one matching game. The other is the transmitter allocation problem which decides the transmission object that each transmitter communicates with under channel-transmitter matching result, and this sub-problem can be modeled as a potential game. A multiple round stable matching algorithm(MRSMA) is proposed, which obtains a stable matching result for the first sub-problem, and a distributed BR-based transmitter allocation algorithm(DBRTAA) is designed to reach Nash Equilibrium(NE) of the second sub-problem. Simulation results verify the effectiveness and superiority of the proposed method.
基金supported by Shandong Agricultural University Funding of First-class DisciplinesShandong Agricultural University Key Cultivation Discipline Funding for NSFC Proposers+1 种基金supported by Grant of Beihang University Beidou Technology Transformation and Industrialization (BARI1709)Open Project of National Engineering Research Center for Information Technology in Agriculture (No.KF2015W003)
文摘This paper derives a non-stationary multiple-input multiple-output(MIMO) from the one-ring scattering model. The proposed channel model characterizes vehicular radio propagation channels with considerations of moving base and mobile stations, which makes the angle of arrivals(AOAs) along with the angle of departures(AODs) time-variant. We introduce the methodology of including the time-variant impacts when characterizing non-stationary radio propagation channels through the geometrical channel modelling approach. We analyze the statistical properties of the proposed channel model including the local time-variant autocorrelation function(ACF) and the space cross-correlation functions(CCFs). We show that the model developed in this paper for non-stationary scenarios includes the existing one-ring wide-sense stationary channel model as its special case.
基金supported by National Key R&D Program of China under Grant 2021YFB3901302 and 2021YFB2900301the National Natural Science Foundation of China under Grant 62271037,62001519,62221001,and U21A20445+1 种基金the State Key Laboratory of Advanced Rail Autonomous Operation under Grant RCS2022ZZ004the Fundamental Research Funds for the Central Universities under Grant 2022JBQY004.
文摘Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.
文摘We propose two schemes for quantum secure direct communication (QSDC) and deterministic securequantum communication (DSQC) over collective dephasing noisy channel.In our schemes,four special two-qubit statesare used as the quantum channel.Since these states are unchanged through the collective dephasing noisy channel,the effect of the channel noise can be perfectly overcome.Simultaneously,the security against some usual attacks canbe ensured by utilizing the various checking procedures.Furthermore,these two schemes are feasible with present-daytechnique.
基金supported by the Funds for Creative Research Groups of China(No.60821063)the State Key Program of National Natural Science of China(No.60534010)+3 种基金the National 973 Program of China(No.2009CB320604)the Funds of National Science of China(No.60674021,60804024)the 111 Project(No.B08015)the Funds of PhD program of MOE,China(No.20060145019)
文摘This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.
文摘In past decades, there has been a growing interest in the discussion and study of using underwater acoustic channel as the physical layer for communication systems, ranging from point-to-point communications to underwater multicarrier modulation networks. A series of review papers were already available to provide a history of the development of the field until the end of the last decade. In this paper, we attempt to provide an overview of the key developments, both theoretical and applied, in the particular topics regarding multicarrier communication for underwater acoustic communication such as the channel and Doppler shift estimation, video and image transmission throw multicarrier techniques, etc. This paper also includes acoustic propagation properties in seawater and underwater acoustic channel representation.
基金Supported by the National Natural Science Foundation of China(No.61601136)
文摘The extremely limited bandwidth in underwater acoustic communication makes channel estimation using fewer pilot symbols more challenging. Iterative channel estimation( ICE) can be used to refine channel estimation with limited number of pilots,by coupling the channel estimator with channel decoder. In this paper,various feedback strategies in ICE are discussed. The performance of a decision feedback based on the cost function is improved by modifying the design and another four feedback strategies are summarized,including hard/soft decision feedback and their threshold-controlled versions. Simulation results show that ICE can achieve impressive gains over the non-iterative receiver and the gains are more significant with fewer pilots. Furthermore,soft decision feedback outperforms hard decision feedback; while the feedback based on the cost function and soft decision feedback have quite close performance.