期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Sino-French PLM Innovation Center Opened
1
《Tsinghua Science and Technology》 SCIE EI CAS 2006年第1期95-95,共1页
An inauguration ceremony to mark the opening of the Tsinghua Sino-French Product Lifecycle Management Innovation Center (PLMIC) was held in the main building Dec, 6, 2005. Guests and representatives from China, Fran... An inauguration ceremony to mark the opening of the Tsinghua Sino-French Product Lifecycle Management Innovation Center (PLMIC) was held in the main building Dec, 6, 2005. Guests and representatives from China, France, and the U.S. participated in the event. 展开更多
关键词 innovation PLM Sino-French PLM innovation center Opened
原文传递
Multi-GNSS products and services at iGMAS Wuhan Innovation Application Center:strategy and evaluation 被引量:2
2
作者 Xingxing Li Qingyun Wang +4 位作者 Jiaqi Wu Yongqiang Yuan Yun Xiong Xuewen Gong Zhilu Wu 《Satellite Navigation》 2022年第3期106-124,I0004,共20页
Over the past years the International Global Navigation Satellite System(GNSS)Monitoring and Assessment System(iGMAS)Wuhan Innovation Application Center(IAC)dedicated to exploring the potential of multi-GNSS signals a... Over the past years the International Global Navigation Satellite System(GNSS)Monitoring and Assessment System(iGMAS)Wuhan Innovation Application Center(IAC)dedicated to exploring the potential of multi-GNSS signals and providing a set of products and services.This contribution summarizes the strategies,achievements,and innovations of multi-GNSS orbit/clock/bias determination in iGMAS Wuhan IAC.Both the precise products and Real-Time Services(RTS)are evaluated and discussed.The precise orbit and clock products have comparable accuracy with the precise products of the International GNSS Service(IGS)and iGMAS.The multi-frequency code and phase bias products for Global Positioning System(GPS),BeiDou Navigation Satellite System(BDS),Galileo navigation satellite system(Galileo),and GLObal NAvigation Satellite System(GLONASS)are provided to support multi-GNSS and multi-frequency Precise Point Positioning(PPP)Ambiguity Resolution(AR).Compared with dual-frequency PPP AR,the time to first fix of triple-frequency solution is improved by 30%.For RTS,the proposed orbit prediction strategy improves the three dimensional accuracy of predicted orbit by 1 cm.The multi-thread strategy and high-performance matrix library are employed to accelerate the real-time orbit and clock determination.The results with respect to the IGS precise products show the high accuracy of RTS orbits and clocks,4–9 cm and 0.1–0.2 ns,respectively.Using real-time satellite corrections,real-time PPP solutions achieve satisfactory performance with horizontal and vertical positioning errors within 2 and 4 cm,respectively,and convergence time of 16.97 min. 展开更多
关键词 iGMAS Wuhan innovation Application center GREAT software Precise orbit determination Precise clock estimation Observation-specific bias Precise point positioning Real-time service
原文传递
Orbit and clock products for quad-system satellites with undifferenced ambiguity fixing approach
3
作者 Jiaqi Wu Xingxing Li +4 位作者 Yongqiang Yuan Keke Zhang Xin Li Jiaqing Lou Yun Xiong 《Satellite Navigation》 SCIE EI CSCD 2024年第1期125-139,共15页
Integer Ambiguity Resolution(IAR)can significantly improve the accuracy of GNSS Precise Orbit Determination(POD).Traditionally,the IAR in POD is achieved at the Double Differenced(DD)level.In this contribution,we deve... Integer Ambiguity Resolution(IAR)can significantly improve the accuracy of GNSS Precise Orbit Determination(POD).Traditionally,the IAR in POD is achieved at the Double Differenced(DD)level.In this contribution,we develop an Un-Differenced(UD)IAR method for Global Positioning System(GPS)+BeiDou Navigation Satellite System(BDS)+Galileo navigation satellite system(Galileo)+Global'naya Navigatsionnaya Sputnikovaya Sistema(GLONASS)quad-system POD by calibrating UD ambiguities in the raw carrier phase and generating the so-called carrier range.Based on this method,we generate the UD ambiguity-fixed orbit and clock products for the Wuhan Innovation Application Center(IAC)of the International GNSS Monitoring and Assessment System(iGMAS).One-year observations in 2020 from 150 stations are employed to investigate performance of orbit and clock products.Notably,the UD Ambiguity Resolution(AR)yields more resolved integer ambiguities than the traditional DD AR,scaling up to 9%,attributable to its avoidance of station baseline formation.Benefiting from the removal of ambiguity parameters,the computational efficiency of parameter estimation undergoes a substantial 70%improvement.Compared with the float solution,the orbit consistencies of UD AR solution achieve the accuracy of 1.9,5.2,2.8,2.1,and 2.7 cm for GPS,BeiDou-2 Navigation Satellite System(BDS-2),BeiDou-3 Navigation Satellite System(BDS-3),Galileo,and GLONASS satellites respectively,reflecting enhancements of 40%,24%,54%,34%,and 42%.Moreover,the standard deviations of Satellite Laser Ranging(SLR)residuals are spanning 2.5–3.5 cm,underscoring a comparable accuracy to the DD AR solution,with discrepancies below 5%.A notable advantage of UD AR lies in its capability to produce the Integer Recovered Clock(IRC),facilitating Precise Point Positioning(PPP)AR without requiring additional Uncalibrated Phase Delay(UPD)products.To assess the performance of quad-system kinematic PPP based on IRC,a network comprising 120 stations is utilized.In comparison to the float solution,the IRC-based PPP AR accelerates convergence time by 31%and enhance positioning accuracy in the east component by 54%. 展开更多
关键词 Multi-GNSS Precise orbit determination Integer recover clock Undifferenced ambiguity resolution iGMAS innovation application center
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部