期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sonocatalytic activity of LuFeO_3 crystallites synthesized via a hydrothermal route 被引量:3
1
作者 周明 杨华 +2 位作者 县涛 杨阳 张云川 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1987-1994,共8页
LuFeO3 crystallites of different sizes and morphologies were synthesized via a hydrothermal route. The sonocatalytic properties of the as-synthesized samples were investigated by degrading various organic dyes, includ... LuFeO3 crystallites of different sizes and morphologies were synthesized via a hydrothermal route. The sonocatalytic properties of the as-synthesized samples were investigated by degrading various organic dyes, including acid orange 7 (AOT), rhodamine B (RhB), methyl orange (MO), and methylene blue (MB), under ultrasonic irradiation, revealing that they exhibit excellent sonocatalytic activity toward the degradation of these dyes. Particularly, the synthesized bar-like particles with lengths of-3 μm and widths of-1μm have the highest sonocatalytic activity, and the degradation percentage of AO7 reaches 89% after 30 min of sonocatalysis. The effects of inorganic anions such as CI-, NO3-, SO42-, PO43-, and HCO3- on the sonocatalysis efficiency were investigated. Hydroxyl radicals (·OH) detected by fiuorimetry using terephthalic acid as a probe molecule were found to be produced over the ultrasonic-irradiated LuFeO3 particles. The addition of ethanol, which acts as a· OH scavenger, leads to quenching of "OH radicals and a simultaneous decrease in the dye degrada- tion. This suggests that "OH is the dominant active species responsible for the dye degradation. 展开更多
关键词 Lutetium orthoferrite Hydrothermal synthesis Sonocatalytic activity Hydroxyl radical inorganic anion Degradation of organic dyes
下载PDF
The effect of modified layers on the performance of inverted ZnO nanorods/MEH-PPV solar cells 被引量:2
2
作者 YAN Yue ZHAO SuLing +2 位作者 XU Zheng WEI Gong WANG LiHui 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第3期453-458,共6页
We fabricate inverted organic/inorganic hybrid solar cells based on vertically oriented ZnO nanorods and polymer MEH-PPV. The morphology of ZnO nanorods and ZnO nanorods/MEH-PPV hybrid structure is depicted by using s... We fabricate inverted organic/inorganic hybrid solar cells based on vertically oriented ZnO nanorods and polymer MEH-PPV. The morphology of ZnO nanorods and ZnO nanorods/MEH-PPV hybrid structure is depicted by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and atomic force microscope (AFM), respectively. It is observed that ZnO nanorods array grows primarily aligned along the perpendicular direction of the ITO substrate. The MEH-PPV molecule does not enter the interspace between ZnO nanorods completely according to SEM picture. It results in the small and bad contact area between ZnO nanorods and MEH-PPV. To improve the photovoltaic performance, we also fabricate another kind of photovoltaic (PV) device modified by N719 dye, and exploit the effect of N719. After the modification of ZnO nanorods by N719, not only Jsc increases from 0.257 mA/cm2 to 0.42 mA/cm2, but also Voc enhances from 0.37 V to 0.42 V. Insert LiF buffer layer between MEH-PPV and anode, Jsc of 1.05 mA/cm2 is obtained, and it is 2.5 times that the device without LiF. 展开更多
关键词 ZnO nanorods inorganic/organic hybrid solar cell N719 dye LiF
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部