期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Formation,evolution,reconstruction of black shales and their influence on shale oil and gas resource
1
作者 Shi-zhen Li Qiu-chen Xu +11 位作者 Mu Liu Guo-heng Liu Yi-fan Li Wen-yang Wang Xiao-guang Yang Wei-bin Liu Yan-fei An Peng Sun Tao Liu Jiang-hui Ding Qian-chao Li Chao-gang Fang 《China Geology》 CAS CSCD 2024年第3期551-585,共35页
Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential en... Black shales are important products of material cycling and energy exchange among the lithosphere,atmosphere,hydrosphere,and biosphere.They are widely distributed throughout geological history and provide essential energy and mineral resources for the development of human society.They also record the evolution process of the earth and improve the understanding of the earth.This review focuses on the diagenesis and formation mechanisms of black shales sedimentation,composition,evolution,and reconstruction,which have had a significant impact on the formation and enrichment of shale oil and gas.In terms of sedimentary environment,black shales can be classified into three types:Marine,terrestrial,and marine-terrestrial transitional facies.The formation processes include mechanisms such as eolian input,hypopycnal flow,gravity-driven and offshore bottom currents.From a geological perspective,the formation of black shales is often closely related to global or regional major geological events.The enrichment of organic matter is generally the result of the interaction and coupling of several factors such as primary productivity,water redox condition,and sedimentation rate.In terms of evolution,black shales have undergone diagenetic evolution of inorganic minerals,thermal evolution of organic matter and hydrocarbon generation,interactions between organic matter and inorganic minerals,and pore evolution.In terms of reconstruction,the effects of fold deformation,uplift and erosion,and fracturing have changed the stress state of black shale reservoirs,thereby having a significant impact on the pore structure.Fluid activity promotes the formation of veins,and have changed the material composition,stress structure,and reservoir properties of black shales.Regarding resource effects,the deposition of black shales is fundamental for shale oil and gas resources,the evolution of black shales promotes the shale oil and gas formation and storage,and the reconstruction of black shales would have caused the heterogeneous distribution of oil and gas in shales.Exploring the formation mechanisms and interactions of black shales at different scales is a key to in-depth research on shale formation and evolution,as well as the key to revealing the mechanism controlling shale oil and gas accumulation.The present records can reveal how these processes worked in geological history,and improve our understanding of the coupling mechanisms among regional geological events,black shales evolution,and shale oil and gas formation and enrichment. 展开更多
关键词 Black shales Shale oil and gas Resource effects Sedimentary environment Sedimentary process Organic matter accumulation Diagenetic evolution Thermal evolution Organic matter and inorganic minerals Tectonic reconstruction Oil and gas exploration engineering VEINS Fluid activity
下载PDF
Preparation of Ultra-nano Talcum in Sand Mill and Its Application in the Polypropylene 被引量:5
2
作者 宋娜 ZHANG Xiaoji +3 位作者 SHI Liyi 丁鹏 FU Yi PENG Zhihong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第1期12-16,共5页
The grinding of ultra-fine talcum powder and its application in a polypropylene (PP) matrix were investigated. Ultra-fine talcum powder was prepared by adjusting the grinding parameters of the physical milling proce... The grinding of ultra-fine talcum powder and its application in a polypropylene (PP) matrix were investigated. Ultra-fine talcum powder was prepared by adjusting the grinding parameters of the physical milling process. The talcum powder exhibited polymodal distribution. The layered morphology of talcum particles in a horizontal sand mill was rarely damaged or destroyed. PP-talcum nanocomposites were prepared by melt blending using a twin-screw extruder. Nano talcum can be seen as a single particle, although it is not very apparent. The bending strength of talcum-filled PP was gradually increased by approximately 28%. The impact strength linearly decreased as the filler weight ratio increased. The overall maximum improvement in mechanical properties was recorded when the filler ratios increased from 15 wt% to 20 wt%. 展开更多
关键词 inorganic mineral material ultra-fine talc powder POLYPROPYLENE bending modulus
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部