期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamics of soil inorganic phosphorus fractions at aggregate scales in a chronosequence of Chinese fir plantations 被引量:3
1
作者 ZHANG Zhe HUANG Yong-zhen +2 位作者 HE Xin-xin YE Shao-ming WANG Sheng-qiang 《Journal of Mountain Science》 SCIE CSCD 2022年第1期136-150,共15页
Successive cultivation of Chinese fir(Cunninghamia lanceolata) would markedly affect the distribution and accumulation of soil inorganic phosphorus(Pi).However,how different chronosequence phases of Chinese fir planta... Successive cultivation of Chinese fir(Cunninghamia lanceolata) would markedly affect the distribution and accumulation of soil inorganic phosphorus(Pi).However,how different chronosequence phases of Chinese fir plantations exerting influences on the quality and quantity of soil Pi fractions in aggregate-scale remain poorly understood. This study researched the dynamic changes of aggregate-related Pi fractions encompassing occluded-P(O-P), aluminum-bound P(Al-P), iron-bound P(Fe-P), and calcium-bound P(Ca-P) in topsoil(0-20 cm) from different stand aged(9-, 17-, and 26-yr) Chinese fir plantations and one nearby abandoned land(CK) in Rongshui County,Guangxi, China. In this study, soil aggregates were classified into micro-aggregates(< 0.25 mm), small macro-aggregates(1-0.25 mm), medium macroaggregates(2-1 mm), and large macro-aggregates(> 2 mm) by one wet-sieving process. As the primary aggregate fractions correlated with better soil aggregate stability, the large macro-aggregates took the highest proportion in all aggregate sizes regardless of various stand ages of Chinese fir plantations. Besides, the 17-yr plantations of Chinese fir displayed the highest stability of aggregates structure. Compared with CK, all four soil Pi fractions from three different stand ages of Chinese fir plantations generally showed increasing trends.Irrespective of chronosequence phases, Al-P was mainly carried by small macro-aggregates. O-P showed the opposite tendency to Al-P, which had the lowest content in small macro-aggregates. Fe-P and Ca-P showed an even distribution in all aggregates.The contribution rates and stocks of each Pi fraction exhibited close relevance to the content of soil aggregates. As revealed from the results, planting of Chinese fir before 17-yr was beneficial to prompt the formation of large macro-aggregates and the level of soil P. But after 17-yr, successive monoculture planting of Chinese fir would reduce the stability of soil aggregates and render the losses of soil P. The dynamics of soil total phosphorous(TP) and Pi fractions contents were highly related to the stand ages of Chinese fir plantations, but less related to the distribution of soil aggregate sizes. As the major carriers for soil P stocks, the large macro-aggregates played a vital role in the cycles and reserves of soil P. 展开更多
关键词 inorganic phosphorus fractions Soil aggregates Chinese fir plantations Cunninghamia lanceolata
下载PDF
Fine Root Patterning and Balanced Inorganic Phosphorus Distribution in the Soil Indicate Distinctive Adaptation of Maize Plants to Phosphorus Deficiency 被引量:3
2
作者 ZHANG Yu YU Peng +3 位作者 PENG Yun-Feng LI Xue-Xiun CHEN Fan-Jun LI Chun-Jian 《Pedosphere》 SCIE CAS CSCD 2012年第6期870-877,共8页
Plants have diverse strategies to cope with phosphorus (P) deficiency. To better understand how maize responds to P deficiency, a field experiment with two P levels, 0 and 100 kg P205 ha-1 (P0 and P100, respectivel... Plants have diverse strategies to cope with phosphorus (P) deficiency. To better understand how maize responds to P deficiency, a field experiment with two P levels, 0 and 100 kg P205 ha-1 (P0 and P100, respectively), was carried out as a part of a long-term Pfertilizer field trial. Plant and soil analyses showed that P-deficient maize reduced its growth rate, increased P use efficiency, and formed more thin roots with the diameter less than 0.6 mm at jointing and silking stages, compared to the plants treated with P100. Further, there were no differences in major inorganic P fractions (Ca2-P, Cas-P, Al-P, Fe-P, occluded P and Ca10-P) between the rhizospheric and bulk soils at each harvest, even when soil Olsen-P was only 1.38 mg kg-1. These results suggested that maize responded to P deficiency by reducing the internal P demand for growth and increasing P acquisition ability by favorable root morphological alteration at low carbon cost. 展开更多
关键词 inorganic phosphorus fractions phosphorus starvation RHIZOSPHERE root length root morphology
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部