Inorganic-organic hybrid materials are promising for application in the field of photocatalysis because of their excellent properties.Therefore,their syntheses,mechanisms,and applications are reviewed in this paper.Fi...Inorganic-organic hybrid materials are promising for application in the field of photocatalysis because of their excellent properties.Therefore,their syntheses,mechanisms,and applications are reviewed in this paper.First,we introduce the role of inorganic-organic photocatalysts,their advantages and disadvantages,and their design principles.Second,we present the top-down and bottom-up synthesis methods of the hybrid materials.The interaction between inorganic and organic components in hybrid materials is discussed,followed by how to improve inorganic-organic photocatalysts.Third,the applications of hybrid materials in the field of photocatalysis,such as realizing hydrogen evolution,organic pollutant degradation,heavy metals and CO_(2) reduction,sterilization,and nitrogen fixation,are examined.Finally,the application prospects and development directions of inorganic-organic hybrid materials are explored and the unsolved problems are described.展开更多
A novel inorganic-organic hybrid borate,[Al2(fum)(H3BO3)(OH) 4]n·n(H3BO3) (1,H2fum = fumaric acid) ,has been synthesized and characterized by single-crystal X-ray diffraction,FTIR and elemental analysis...A novel inorganic-organic hybrid borate,[Al2(fum)(H3BO3)(OH) 4]n·n(H3BO3) (1,H2fum = fumaric acid) ,has been synthesized and characterized by single-crystal X-ray diffraction,FTIR and elemental analysis. Crystal data for compound 1: orthorhombic,space group Pnma,a = 14.108(3) ,b = 6.9412(14) ,c = 14.995(3)A,V = 1468.3(5)A^3,Z = 4,Mr = 359.72,Dc = 1.627 g/cm^3,μ = 0.254 mm^-1,F(000) = 736,the final R = 0.0492 and wR = 0.1650 with I 〉 2σ(I) . In compound 1,each Al^Ⅲ ion is coordinated by six oxygen atoms to adopt a distorted octahedral geometry. Both fumarate anion and the coordinated boric acid act as bidentate bridging ligands to link two neighboring Al^Ⅲ centers simultaneously. Each Al^Ⅲ ion is bridged by two μ2-hydroxyl ligands to construct an infinite wave-like [Al2(fum)(H3BO3)(OH) 4]n chain. These one-dimensional chains form hydrogen bonds with free boric acid molecules giving rise to a three-dimensional supramolecular network.展开更多
A unique ionic hybrid material[C_6H_(12)N_5O]_3[(PO_4)W__(12)O_(36)]·5H_2O has been synthesized from the reaction of((1H-tetrazole-5- yl)methyl)morpholine andα-H_3[(PO_4)W_(12)O_(36)]·21H_2O.It has successf...A unique ionic hybrid material[C_6H_(12)N_5O]_3[(PO_4)W__(12)O_(36)]·5H_2O has been synthesized from the reaction of((1H-tetrazole-5- yl)methyl)morpholine andα-H_3[(PO_4)W_(12)O_(36)]·21H_2O.It has successfully been characterized by elemental analysis,IR and ~1H NMR spectroscopies,TGA and single-crystal X-ray diffraction method.The title compound is constructed from the three [C_6H_(12)N_5O]^+ cations andα-Keggin[(PO_4)W_(12)O_(36)]^(3-) polyoxoanion.The most remarkable structural feature of this hybrid can...展开更多
A new inorganic-organic hybrid constructed from biisoquinoline dication and tin halide, [(BIQBT)(Sn Cl6)]n(1, BIQBT = 1,4-bis(isoquinoline) butane), has been synthesized and structurally determined by X-ray di...A new inorganic-organic hybrid constructed from biisoquinoline dication and tin halide, [(BIQBT)(Sn Cl6)]n(1, BIQBT = 1,4-bis(isoquinoline) butane), has been synthesized and structurally determined by X-ray diffraction method. 1 crystallizes in the monoclinic system, space group Cc with Mr = 644.82, a = 16.589(3), b = 18.388(4), c = 8.5532(17)A, β = 108.75(3)°, V = 2470.6(9) A3, Z = 4, Dc = 1.736 g/cm^3, F(000) = 1281, μ(Mo Kα) = 1.697 mm^–1, the final R = 0.0197 and wR = 0.0493 for 4614 observed reflections with I 〉 2(I). 1 consists of BIQBT^2+dications and mononuclear hexachloridostannate Sn Cl62- anion, and hydrogen bonds among them contribute to the formation of a 1-D chain. Strong fluorescence can be detected in 1, which was explained by theoretical calculation. Its electrochemical behavior was investigated, and the theoretical calculations reveal that the π···π stacking interaction is dominated for their structural stabilization.展开更多
An inorganic-organic hybrid compound, [H_3NC_2H_4NH_2]VOPO_4 was synthesized by means of the hydrothermal method. It was crystallized in a monoclinic system, a space group P2_1/c, with the crystal cell parameters: a=0...An inorganic-organic hybrid compound, [H_3NC_2H_4NH_2]VOPO_4 was synthesized by means of the hydrothermal method. It was crystallized in a monoclinic system, a space group P2_1/c, with the crystal cell parameters: a=0.92285(11) nm, b=0.72994(9) nm, c=0.98495(11) nm, β=101.280(3)°, V=0.65067(13) nm^3, M_r=223.02 g/mol, D_c=2.277 g/cm^3, Z=4, R=0.0315, ωR=0.0865, GOF=1.085. The VO_5N octahedra chains are corner-linked by PO_4 tetrahedra; the VO_5N octahedra are all trans-linked with V—O bonds being alternately short and long. The monoprotonated ethylenediamine was intercalated between the layers with one end coordinating to V and the other end as an H-bond donor interacting with a terminal O atom of PO_4 from a neighboring sheet. The elementary analysis, infrared spectrum characters and thermal stability were also given.展开更多
A novel supramolecular structural inorganic-organic hybrid [(4-bromoanilimiun)([18]crown-6)]3[PMo(12)O40]·CH3 CN has been synthesized through standard solvent evaporated method. The structure of the title c...A novel supramolecular structural inorganic-organic hybrid [(4-bromoanilimiun)([18]crown-6)]3[PMo(12)O40]·CH3 CN has been synthesized through standard solvent evaporated method. The structure of the title compound was determined through single-crystal X-ray diffraction analysis. It crystallizes in monoclinic system with P21/n space group. The crystal data are a = 18.9529(4), b = 26.4444(5), c = 19.0985(4) A, β = 90.132(6)o, V = 9572.1(3) A^3, Z = 4, Dc= 2.203 g·cm^(–1), μ = 14.956 mm^(–1), F(000) = 6192, S = 1.098, the final R = 0.0859 and w R(I 〉 2σ(I)) = 0.2100. Supramolecular cations are constructed through strong N–H…O hydrogen bonding interaction between the six oxygen atoms of [18]crown-6 molecule and nitrogen atom of(4-bromoanilimiun) cation. Three kinds of different arranged supramolecular cations exist in the title compound, which are filled into the large space formed by [PMo(12)O40] polyoxoanions. Thermogravimentic differential thermal analysis revealed that hydrogen bonding interaction and intermolecular interaction play an important role in maintaining the stability of the title compound.展开更多
A series of inorganic-organic thin films based on uniformly dispersed nanoparticles of polyoxometalates (POM)entrapped in polyacrylamide (PAM) matrix were prepared by ultrasonic method with different irradiation t...A series of inorganic-organic thin films based on uniformly dispersed nanoparticles of polyoxometalates (POM)entrapped in polyacrylamide (PAM) matrix were prepared by ultrasonic method with different irradiation time.The microstructure, photochromic behavior and mechanism of the films were studied by transmission electron microscopy (TEM), ultraviolet-visible spectra (UV-VIS) and Fourier transform-infrared spectroscopy (FT-IR).The microstructure and photochromic properties of the hybrid thin films could be controlled by ultrasound.TEM image revealed that the average size of phosphotungstic acid (PWA) nanoparticles decreased from 20 to 10 nm with the ultrasound irradiation time from 30 to 60 min. After irradiated with ultraviolet light,the transparent films changed from colorless to blue and showed reversible photochromism. The hybrid film, with ultrasound irradiation for 60 min had higher photochromic efficiency and faster bleaching reaction than the one with ultrasound irradiation for 30 min. FT-IR spectra showed that the Keggin geometry of heteropolyoxometalate was still preserved inside the composites, and the interactions between polyanions and polymer matrix increased as the ultrasound time prolonged. It is suggested that the mechanism of the different photochromic properties for the inorganic-organic thin films is the variation of the microstructure and interfacial interactions induced by ultrasound.展开更多
A novel one-dimensional inorganic-organic hybrid gallophosphate compound, Ga(2,2'-bipy)(HPO4). (H2PO4)(denoted JGP-2) was synthesized hydrothermally with 2,2'-bipyridine as a ligand and characterized by X-ra...A novel one-dimensional inorganic-organic hybrid gallophosphate compound, Ga(2,2'-bipy)(HPO4). (H2PO4)(denoted JGP-2) was synthesized hydrothermally with 2,2'-bipyridine as a ligand and characterized by X-ray powder diffraction (XRD), elemental analysis, inductively coupled plasma(ICP), TGA analysis, solid-state ^31p NMR, and luminescence spectra and structurally determined by single-crystal X-ray diffraction analysis. JGP-2 crystallized in the triclinic system, space group P^-1(No.2), with a=0.7818(1) nm, b=0.8611 (2) nm, c=1.0908(2) nm, V=0.6727(2) nm^3 and Z=2 with R1=0.0223. The structure of JGP-2 was built up by alternate arrangement of GaO4N2 octahedra, and HPO4(or H2PO4) tetrahedra to form an infinite one-dimensional corner-sharing-corner(CSC) chain. Through P sites, the CSC chains link with an unusual edge-sharing dimmer, Ga2F4(H2O)2, giving rise to a 4,10-membered ring net layered structure of JGP-7. On excitation at 254 nm, JGP-2 can emit strong blue light at ,λmax=388 rim. JGP-7 presents a strong fluorescence emission band centered at 394 nm(λex=340 nm), the emission energy of JGP-7 is red-shifted comoared with that of JGP-2.展开更多
The inorganic-organic hybrid junction was synthesized on ITO glass substrate, which was consisted of an n-type ZnO nanorods (NRs) grown by low-temperature aqueous chemical growth method and a p-type polyfluorene (P...The inorganic-organic hybrid junction was synthesized on ITO glass substrate, which was consisted of an n-type ZnO nanorods (NRs) grown by low-temperature aqueous chemical growth method and a p-type polyfluorene (PF) organic film fabricated by spin-coating. The experimental results indicate that densely and uniformly distributed ZnO nanorods are successfully grown on the PF layer. The thickness of the PF layer plays a dominant role for the current-voltage (I-V) characteristic of the ZnO NRs/PF inorganic-organic hybrid junction device, and a p-n junction with obviously rectifying behavior is achieved with optimal PF layer thickness. The photoluminescence (PL) spectrum covering the broad visible range was obtained from the n-ZnO nanorods/p-polyfluorene (PF) structure, which was originated from the combination of the PF-related blue emission and the ZnO-related deep level emission.展开更多
A new inorganic-organic hybrid compound based on polyoxometalate and organic ligand formulated as (H2bpp)3[SiWlIO39Co]-2H20(1)[bpp=l,3-bis(4-pyridyl)propane] was hydrothermally synthesized and structurally chara...A new inorganic-organic hybrid compound based on polyoxometalate and organic ligand formulated as (H2bpp)3[SiWlIO39Co]-2H20(1)[bpp=l,3-bis(4-pyridyl)propane] was hydrothermally synthesized and structurally characterized by elemental analysis, single-crystal X-ray diffraction, IR, TG, and cyclic voltammetry. Single-crystal X-ray diffraction analysis reveals that compound 1 consists of interesting cobalt-monosubstituted POMs one dimensional chain together with protonated bpp ligands. Additionally, the polyoxoanions combined with the discrete organic substrates by hydrogen bond interactions to afford a supramolecular 3D network structure. The hybrid compound 1 was used as a bulk modifier to fabricate a three-dimensional chemically modified carbon paste electrode(1-CPE) by direct mixing. The electrochemical behavior and electrocatalysis of 1-CPE were studied in detail. The results indicate that 1-CPE has good electrocatalytic activities toward the reduction of nitrite or bromate in 1 mol/L 1-12SO4 aqueous solution. 1-CPE shows remarkable stability that can be ascribed to the insolubility of compound 1 and the supramolecular interactions existed between 1D POM anion chains and organic ligand bpp, which is very important for practical applications in electrode modification.展开更多
By using different organic ligands, two 3D inorganic-organic hybrid compounds Co(C4H4N2)(VO3)2 1 and Co(C12H12N2)(VO3)2 2 were synthesized by hydrothermal reaction and characterized by X-ray crystallography. C...By using different organic ligands, two 3D inorganic-organic hybrid compounds Co(C4H4N2)(VO3)2 1 and Co(C12H12N2)(VO3)2 2 were synthesized by hydrothermal reaction and characterized by X-ray crystallography. Crystal data: 1. crystal system orthorhombic, space group Pnna, a=1 0.188(2) A, b=1 1.497(2) A, c=7.3975(15) A, V=866.5(3) A^3, Z=4, Dcalcd= 2.705 g/cm^3; 2. crystal system triclinic, space group P1^- (No. 2), a=8.3190(17) A, b=8.4764(17) A, c=1 1.183(2) A, a=95.48(3)°, β=92.03(3)°, γ=107.24(3)°,V=748.0(3) A^3, Z=2, Dcalcd= 1.958 g/cm^3. The framework of compound 1 contains both {Co(C4H4N2)} and infinite metavanadate chains. Crystal structure of compound 2 is constructed with inorganic {CoV2O6} layers across-linked by organic 1,2-bis(4-pyridyl) ethane ligands. The two compounds are thermally stable to approximately 410 ℃ and 350 ℃, respectively. Their optical band gaps are determined to be 2.13 eV and 2.12 eV by UV-VIS-NIR diffuse reflectance spectra, which revealed their nature of semiconductor and optical absorption features.展开更多
A novel coordination polymer [Na2Cd(2,6-pyda)(N3)2(H2O)6]n (2,6-H2pyda = 2,6- pyridinedicarboxylic acid) has been synthesized and characterized by elemental analysis, IR and single-crystal X-ray diffraction. T...A novel coordination polymer [Na2Cd(2,6-pyda)(N3)2(H2O)6]n (2,6-H2pyda = 2,6- pyridinedicarboxylic acid) has been synthesized and characterized by elemental analysis, IR and single-crystal X-ray diffraction. The crystal belongs to the monoclinic system, space group C2/c, with a = 24.416(4), b = 10.7638(17), c = 6.9224(11) A^°, β= 106.124(2)A^°, V = 1747.7(5) A^°3, Mr = 515.64, De= 1.960 g/cm^3,μ = 1.365 mm^-1, F(000) = 1024, Z = 4, the final R = 0.0426 and wR = 0.1320. In the title complex, there exist two kinds of metal centers in the structure, cadmium ions and sodium ions. The Cd(Ⅱ) atom shows a distorted pentagonal-dipyramidal geometry defined by two O and one N atoms from one deprotonated pyda ligand and four N atoms from four μ-1,1,3 azido groups. The adjacent cadmium atoms are bridged via two μ-1,1,3 azido groups, along the c axis to afford an extended chain. There is also a 2D network which is comprised of binuclear subunits [NaE(H2O)6] connected by O atoms from coordinated water between the adjacent Cdn(pyda)n(Na)2n infinite chains. Furthermore, each cadmium atom is connected with four adjacent sodium atoms through the bridging N3- ligand in μ-1,3 patterns. Thus, the title complex exhibits a novel three-dimensional network structure.展开更多
Ni(H_2O)_6][H_2N(C_2H_4)_2NH_2](SO_4)_2 is an inorganic-organic compound with a new open framework synthesized by hydrothermal method, and characterized by means of single-crystal diffraction and spectroscopic data. T...Ni(H_2O)_6][H_2N(C_2H_4)_2NH_2](SO_4)_2 is an inorganic-organic compound with a new open framework synthesized by hydrothermal method, and characterized by means of single-crystal diffraction and spectroscopic data. The compound crystallized in a monoclinic space group P2_1/n with a=1.29089(2) nm, b=1.06301(3) nm, c=1.33202(4) nm, β=114.0870(10)°, V=1.67127(8) nm 3, Z=4, and was solved by using the direct method and the least-squares refinement converged at R=0.0214[I>2σ(I)]. The structure consists of isolated Ni(H_2O)_6 octahedra and SO_4 tetrahedra, with both of them hydrogen-bonded to piperazine cations.展开更多
Organic-inorganic nanojunctions can result in a selective scattering of charge carrier depending on their energy, which leads to a simultaneous increase in the Seebeck coefficient S and the power factor. In this work,...Organic-inorganic nanojunctions can result in a selective scattering of charge carrier depending on their energy, which leads to a simultaneous increase in the Seebeck coefficient S and the power factor. In this work, the nanojunction is successfully employed at the organic-inorganic semiconductor interface of polyparaphenylene (PPP) and Zn1-xAgxO nanoparticles through the sol-gel method. The presence of nanoinclusions PPP in Zno.gAgoa 0 matrix is found to be effective in improving the figure of merit (ZT) by the dual effects of an increase in the power factor consistent with the heterojunetion effect and a reduction in thermal conductivity. Zno.gAgo.10/0.1 wt% PPP exhibits a maximum figure of merit, i.e., ZT= 0.22.展开更多
A novel inorganic-organic hybrid based on isopolyanion,{[Cu2(phen)2(μ-ox)][H2Mo8O26]}·4EtOH·Et2O(1) (phen=phenanthroline,ox=oxalate),was synthesized under open-air mild reaction conditions,and chara...A novel inorganic-organic hybrid based on isopolyanion,{[Cu2(phen)2(μ-ox)][H2Mo8O26]}·4EtOH·Et2O(1) (phen=phenanthroline,ox=oxalate),was synthesized under open-air mild reaction conditions,and characterized by elemental analysis,IR,ICP,TG and single crystal X-ray diffraction analysis.The crystal structure belongs to triclinic system with space group Pī and cell parameters:a=1.1075(5) nm,b=1.1608(5) nm,c=1.3333(5) nm,α=91.683(5)o,β=113.996(5)o,γ=112.170(5)o,V=1.4159(10) nm3,Mr=2017.44,Z=1,Dc=2.366 g/cm3 and F(000)=980.0.The structure of hybrid 1 is a 1D chain constructed of alternating octamolybdate isopolyanions [β-(Mo8O26)4-] and oxalato-bridged dinuclear copper complex cations [Cu2(phen)2(μ-ox)]2+.Ultimately,a 3D supramolecular network was formed by hydrogen bond interactions among the adjacent chains.The result shows that hybrid 1 is the first example of inorganic-organic hybrid constructed from isopolyanion and oxalato-bridged dinuclear copper complex fragment (CCDC No.665101).展开更多
Four rare earth inorganic-organic hybrid compounds based on Keggin-type polyoxometalate {SiW_(12)}with general formula [{RE(DMF)_(4)(H_(2)O)_4RE(DMF)_(6)}_(2){SiW_(12)O_(40)}_(3)](RE = La(1),Pr(2),Sm(3),Eu(4),DMF=N,N-...Four rare earth inorganic-organic hybrid compounds based on Keggin-type polyoxometalate {SiW_(12)}with general formula [{RE(DMF)_(4)(H_(2)O)_4RE(DMF)_(6)}_(2){SiW_(12)O_(40)}_(3)](RE = La(1),Pr(2),Sm(3),Eu(4),DMF=N,N-dimethylformamide) were synthesized by the conventional solution method.Structure analyses indicate that four compounds are isostructural and are all built from three [SiW_(12)O_(40)]^(4-) polyoxoanions and DMF ligands linked by RE^(3+).Compounds 1-4 are extremely sensitive to UV light and present excellent photochromic properties,in which the coloring and fading time of samples are both no more than 2 min,and the reversible coloring-fading process can be repeated for at least 10 cycles with little fatigue,suggesting that compounds 1-4 can be a series of fast-responsive and durable photochromic materials.Moreover,the solid-state photoluminescence spectra of compounds 3(Sm) and 4(Eu)display strong characteristic emissions of rare earth ions based on f-f transitions.Meanwhile,compound4(Eu) has a longer fluorescence lifetime up to 566.74 μs.Notably,co mpounds 3(Sm) and 4(Eu) exhibit the switchable luminescence behavior induced by photochromism,which allows them to be used as potential molecular switches.展开更多
A 3D nanostructured scaffold as the host for zinc enables effective inhibition of anodic dendrite growth.However,the increased electrode/electrolyte interface area provided by using 3D matrices exacerbates the passiva...A 3D nanostructured scaffold as the host for zinc enables effective inhibition of anodic dendrite growth.However,the increased electrode/electrolyte interface area provided by using 3D matrices exacerbates the passivation and localized corrosion of the Zn anode,ultimately bringing about the degradation of the electrochemical performance.Herein,a nanoscale coating of inorganic-organic hybrid(α-In_(2)Se_(3)-Nafion)onto a flexible carbon nanotubes(CNTs)framework(ISNF@CNTs)is designed as a Zn plating/stripping scaffold to ensure uniform Zn nucleation,thus achieving a dendrite-free and durable Zn anode.The intro-duced inorganic-organic interfacial layer is dense and sturdy,which hinders the direct exposure of deposited Zn to electrolytes and mitigates the side reactions.Meanwhile,the zincophilic nature of ISNF can largely reduce the nucleation energy barrier and promote the ion-diffusion transportation.Consequently,the ISNF@CNTs@Zn electrode exhibits a low-voltage hysteresis and a superior cycling life(over 1500 h),with dendrite-free Zn-plating behaviors in a typical symmetrical cell test.Additionally,the superior feature of ISNF@CNTs@Zn anode is further demonstrated by Zn-MnO_(2)cells in both coin and flexible quasi-solid-state configurations.This work puts forward an inspired remedy for advanced Zn-ion batteries.展开更多
An organic silane acrylate resin (PMBK) was synthesized by free-radical solution polymerization using methyl methacrylate, butyl acrylate and (3-methacryloxypropyl)trimethoxysilane as monomers. Aluminum (AI) par...An organic silane acrylate resin (PMBK) was synthesized by free-radical solution polymerization using methyl methacrylate, butyl acrylate and (3-methacryloxypropyl)trimethoxysilane as monomers. Aluminum (AI) particles were then encapsulated in inorganic-organic hybrid films that were prepared by hydrolysis and condensation of PMBK and tetraethyl orthosilicate (TEOS) on the surface of AI pigments. Characterization results showed that PMBK and TEOS could simultaneously hydrolyze ancl condense with hydroxyl groups on the surface of the A1 particles to form composite AI particles coated with inorganic-organic hybrid films. Compared with raw AI particles, the corrosion resistance and adhesive properties of paint films containing the composite AI particles were improved greatly, while the glossiness of the paint films decreased slightly, from 48.6° to 47.0°. In alkaline media (pH 11 ), the volume of evolved H2 of composite AI particles was only 3.5 mL, whereas that of raw AI was 83.5 mL. The glossiness of paint films containing composite A1 particles decreased by 1.66% after immersion in alkaline media for 24h, whereas that of raw AI decreased by 14.82%. Peel-off tests of the paint films showed that the composite particles moved slightly away from the paint films. In contrast, the raw A1 particles were seriously desquamated, suggesting encapsulation of hybrid films can greatly improve the adhesive properties of A1 particles in paint films.展开更多
The inorganic-organic S-scheme heterojunction photocatalyst demonstrates exceptional light absorption capacity,high photogenerated charge separation efficiency,and remarkable redox ability,while also inheriting divers...The inorganic-organic S-scheme heterojunction photocatalyst demonstrates exceptional light absorption capacity,high photogenerated charge separation efficiency,and remarkable redox ability,while also inheriting diverse advantages of both inorganic and organic semiconductors.This paper provides a comprehensive review of recent advances in photocatalysis in relation to the inorganic-organic S-scheme heterojunction photocatalyst.Firstly,the fundamental aspects and benefits of the S-scheme heterojunction photocatalyst are outlined,followed by a discussion of several synthetic techniques for producing the inorganic-organic S-scheme heterojunction photocatalyst,as well as various advanced characterization methods that can verify the S-scheme heterojunction photocatalyst in both steady-state and transient processes.The impact of the inorganic-organic S-scheme heterojunction photocatalyst is illustrated with examples in fields such as carbon dioxide reduction,water splitting for hydrogen production,hydrogen peroxide synthesis,nitrogen fixation,organic pollutant degradation,organic transformation,and sterilization.Finally,suggestions are presented for designing the inorganic-organic S-scheme heterojunction photocatalyst and enhancing its photocatalytic performance.Undoubtedly,the inorganic-organic Sscheme heterojunction photocatalyst has emerged as a prominent and promising technology in the field of photocatalysis.展开更多
文摘Inorganic-organic hybrid materials are promising for application in the field of photocatalysis because of their excellent properties.Therefore,their syntheses,mechanisms,and applications are reviewed in this paper.First,we introduce the role of inorganic-organic photocatalysts,their advantages and disadvantages,and their design principles.Second,we present the top-down and bottom-up synthesis methods of the hybrid materials.The interaction between inorganic and organic components in hybrid materials is discussed,followed by how to improve inorganic-organic photocatalysts.Third,the applications of hybrid materials in the field of photocatalysis,such as realizing hydrogen evolution,organic pollutant degradation,heavy metals and CO_(2) reduction,sterilization,and nitrogen fixation,are examined.Finally,the application prospects and development directions of inorganic-organic hybrid materials are explored and the unsolved problems are described.
基金supported by the Ningbo Natural Science Foundation (2009A610052)the "Qianjiang Talent" Programs of Zhejiang Province (2009R10032)the K. C. Wang Magna Fund in Ningbo University
文摘A novel inorganic-organic hybrid borate,[Al2(fum)(H3BO3)(OH) 4]n·n(H3BO3) (1,H2fum = fumaric acid) ,has been synthesized and characterized by single-crystal X-ray diffraction,FTIR and elemental analysis. Crystal data for compound 1: orthorhombic,space group Pnma,a = 14.108(3) ,b = 6.9412(14) ,c = 14.995(3)A,V = 1468.3(5)A^3,Z = 4,Mr = 359.72,Dc = 1.627 g/cm^3,μ = 0.254 mm^-1,F(000) = 736,the final R = 0.0492 and wR = 0.1650 with I 〉 2σ(I) . In compound 1,each Al^Ⅲ ion is coordinated by six oxygen atoms to adopt a distorted octahedral geometry. Both fumarate anion and the coordinated boric acid act as bidentate bridging ligands to link two neighboring Al^Ⅲ centers simultaneously. Each Al^Ⅲ ion is bridged by two μ2-hydroxyl ligands to construct an infinite wave-like [Al2(fum)(H3BO3)(OH) 4]n chain. These one-dimensional chains form hydrogen bonds with free boric acid molecules giving rise to a three-dimensional supramolecular network.
文摘A unique ionic hybrid material[C_6H_(12)N_5O]_3[(PO_4)W__(12)O_(36)]·5H_2O has been synthesized from the reaction of((1H-tetrazole-5- yl)methyl)morpholine andα-H_3[(PO_4)W_(12)O_(36)]·21H_2O.It has successfully been characterized by elemental analysis,IR and ~1H NMR spectroscopies,TGA and single-crystal X-ray diffraction method.The title compound is constructed from the three [C_6H_(12)N_5O]^+ cations andα-Keggin[(PO_4)W_(12)O_(36)]^(3-) polyoxoanion.The most remarkable structural feature of this hybrid can...
文摘A new inorganic-organic hybrid constructed from biisoquinoline dication and tin halide, [(BIQBT)(Sn Cl6)]n(1, BIQBT = 1,4-bis(isoquinoline) butane), has been synthesized and structurally determined by X-ray diffraction method. 1 crystallizes in the monoclinic system, space group Cc with Mr = 644.82, a = 16.589(3), b = 18.388(4), c = 8.5532(17)A, β = 108.75(3)°, V = 2470.6(9) A3, Z = 4, Dc = 1.736 g/cm^3, F(000) = 1281, μ(Mo Kα) = 1.697 mm^–1, the final R = 0.0197 and wR = 0.0493 for 4614 observed reflections with I 〉 2(I). 1 consists of BIQBT^2+dications and mononuclear hexachloridostannate Sn Cl62- anion, and hydrogen bonds among them contribute to the formation of a 1-D chain. Strong fluorescence can be detected in 1, which was explained by theoretical calculation. Its electrochemical behavior was investigated, and the theoretical calculations reveal that the π···π stacking interaction is dominated for their structural stabilization.
基金Supported by the National Natural Science Foundation of China.
文摘An inorganic-organic hybrid compound, [H_3NC_2H_4NH_2]VOPO_4 was synthesized by means of the hydrothermal method. It was crystallized in a monoclinic system, a space group P2_1/c, with the crystal cell parameters: a=0.92285(11) nm, b=0.72994(9) nm, c=0.98495(11) nm, β=101.280(3)°, V=0.65067(13) nm^3, M_r=223.02 g/mol, D_c=2.277 g/cm^3, Z=4, R=0.0315, ωR=0.0865, GOF=1.085. The VO_5N octahedra chains are corner-linked by PO_4 tetrahedra; the VO_5N octahedra are all trans-linked with V—O bonds being alternately short and long. The monoprotonated ethylenediamine was intercalated between the layers with one end coordinating to V and the other end as an H-bond donor interacting with a terminal O atom of PO_4 from a neighboring sheet. The elementary analysis, infrared spectrum characters and thermal stability were also given.
基金thank the foundation of Wuhan Textile University(No.165002)Hubei Key Laboratory of Biomass Fibers and Eco-dyeing&Finishing for supporting this work
文摘A novel supramolecular structural inorganic-organic hybrid [(4-bromoanilimiun)([18]crown-6)]3[PMo(12)O40]·CH3 CN has been synthesized through standard solvent evaporated method. The structure of the title compound was determined through single-crystal X-ray diffraction analysis. It crystallizes in monoclinic system with P21/n space group. The crystal data are a = 18.9529(4), b = 26.4444(5), c = 19.0985(4) A, β = 90.132(6)o, V = 9572.1(3) A^3, Z = 4, Dc= 2.203 g·cm^(–1), μ = 14.956 mm^(–1), F(000) = 6192, S = 1.098, the final R = 0.0859 and w R(I 〉 2σ(I)) = 0.2100. Supramolecular cations are constructed through strong N–H…O hydrogen bonding interaction between the six oxygen atoms of [18]crown-6 molecule and nitrogen atom of(4-bromoanilimiun) cation. Three kinds of different arranged supramolecular cations exist in the title compound, which are filled into the large space formed by [PMo(12)O40] polyoxoanions. Thermogravimentic differential thermal analysis revealed that hydrogen bonding interaction and intermolecular interaction play an important role in maintaining the stability of the title compound.
文摘A series of inorganic-organic thin films based on uniformly dispersed nanoparticles of polyoxometalates (POM)entrapped in polyacrylamide (PAM) matrix were prepared by ultrasonic method with different irradiation time.The microstructure, photochromic behavior and mechanism of the films were studied by transmission electron microscopy (TEM), ultraviolet-visible spectra (UV-VIS) and Fourier transform-infrared spectroscopy (FT-IR).The microstructure and photochromic properties of the hybrid thin films could be controlled by ultrasound.TEM image revealed that the average size of phosphotungstic acid (PWA) nanoparticles decreased from 20 to 10 nm with the ultrasound irradiation time from 30 to 60 min. After irradiated with ultraviolet light,the transparent films changed from colorless to blue and showed reversible photochromism. The hybrid film, with ultrasound irradiation for 60 min had higher photochromic efficiency and faster bleaching reaction than the one with ultrasound irradiation for 30 min. FT-IR spectra showed that the Keggin geometry of heteropolyoxometalate was still preserved inside the composites, and the interactions between polyanions and polymer matrix increased as the ultrasound time prolonged. It is suggested that the mechanism of the different photochromic properties for the inorganic-organic thin films is the variation of the microstructure and interfacial interactions induced by ultrasound.
基金Supported by the National Natural Science Foundation of China(Nos.20671025 and 20771030)China Postdoctoral Science Foundation Funded Project(No.65204)Heilongjiang Province Natural Science Foundation, China(No.B200603).
文摘A novel one-dimensional inorganic-organic hybrid gallophosphate compound, Ga(2,2'-bipy)(HPO4). (H2PO4)(denoted JGP-2) was synthesized hydrothermally with 2,2'-bipyridine as a ligand and characterized by X-ray powder diffraction (XRD), elemental analysis, inductively coupled plasma(ICP), TGA analysis, solid-state ^31p NMR, and luminescence spectra and structurally determined by single-crystal X-ray diffraction analysis. JGP-2 crystallized in the triclinic system, space group P^-1(No.2), with a=0.7818(1) nm, b=0.8611 (2) nm, c=1.0908(2) nm, V=0.6727(2) nm^3 and Z=2 with R1=0.0223. The structure of JGP-2 was built up by alternate arrangement of GaO4N2 octahedra, and HPO4(or H2PO4) tetrahedra to form an infinite one-dimensional corner-sharing-corner(CSC) chain. Through P sites, the CSC chains link with an unusual edge-sharing dimmer, Ga2F4(H2O)2, giving rise to a 4,10-membered ring net layered structure of JGP-7. On excitation at 254 nm, JGP-2 can emit strong blue light at ,λmax=388 rim. JGP-7 presents a strong fluorescence emission band centered at 394 nm(λex=340 nm), the emission energy of JGP-7 is red-shifted comoared with that of JGP-2.
基金Funded by the National Natural Science Foundation of China (Nos.10804014,11004092,60807009)the Fundamental Research Funds for the Central Universities (No.DUT10LK01)
文摘The inorganic-organic hybrid junction was synthesized on ITO glass substrate, which was consisted of an n-type ZnO nanorods (NRs) grown by low-temperature aqueous chemical growth method and a p-type polyfluorene (PF) organic film fabricated by spin-coating. The experimental results indicate that densely and uniformly distributed ZnO nanorods are successfully grown on the PF layer. The thickness of the PF layer plays a dominant role for the current-voltage (I-V) characteristic of the ZnO NRs/PF inorganic-organic hybrid junction device, and a p-n junction with obviously rectifying behavior is achieved with optimal PF layer thickness. The photoluminescence (PL) spectrum covering the broad visible range was obtained from the n-ZnO nanorods/p-polyfluorene (PF) structure, which was originated from the combination of the PF-related blue emission and the ZnO-related deep level emission.
基金Supported by the Natural Science Foundation of Liaoning Province, China(No20061073)Education Committee Foun-dation of Liaoning Province, China(No2006031)
文摘A new inorganic-organic hybrid compound based on polyoxometalate and organic ligand formulated as (H2bpp)3[SiWlIO39Co]-2H20(1)[bpp=l,3-bis(4-pyridyl)propane] was hydrothermally synthesized and structurally characterized by elemental analysis, single-crystal X-ray diffraction, IR, TG, and cyclic voltammetry. Single-crystal X-ray diffraction analysis reveals that compound 1 consists of interesting cobalt-monosubstituted POMs one dimensional chain together with protonated bpp ligands. Additionally, the polyoxoanions combined with the discrete organic substrates by hydrogen bond interactions to afford a supramolecular 3D network structure. The hybrid compound 1 was used as a bulk modifier to fabricate a three-dimensional chemically modified carbon paste electrode(1-CPE) by direct mixing. The electrochemical behavior and electrocatalysis of 1-CPE were studied in detail. The results indicate that 1-CPE has good electrocatalytic activities toward the reduction of nitrite or bromate in 1 mol/L 1-12SO4 aqueous solution. 1-CPE shows remarkable stability that can be ascribed to the insolubility of compound 1 and the supramolecular interactions existed between 1D POM anion chains and organic ligand bpp, which is very important for practical applications in electrode modification.
文摘By using different organic ligands, two 3D inorganic-organic hybrid compounds Co(C4H4N2)(VO3)2 1 and Co(C12H12N2)(VO3)2 2 were synthesized by hydrothermal reaction and characterized by X-ray crystallography. Crystal data: 1. crystal system orthorhombic, space group Pnna, a=1 0.188(2) A, b=1 1.497(2) A, c=7.3975(15) A, V=866.5(3) A^3, Z=4, Dcalcd= 2.705 g/cm^3; 2. crystal system triclinic, space group P1^- (No. 2), a=8.3190(17) A, b=8.4764(17) A, c=1 1.183(2) A, a=95.48(3)°, β=92.03(3)°, γ=107.24(3)°,V=748.0(3) A^3, Z=2, Dcalcd= 1.958 g/cm^3. The framework of compound 1 contains both {Co(C4H4N2)} and infinite metavanadate chains. Crystal structure of compound 2 is constructed with inorganic {CoV2O6} layers across-linked by organic 1,2-bis(4-pyridyl) ethane ligands. The two compounds are thermally stable to approximately 410 ℃ and 350 ℃, respectively. Their optical band gaps are determined to be 2.13 eV and 2.12 eV by UV-VIS-NIR diffuse reflectance spectra, which revealed their nature of semiconductor and optical absorption features.
基金supported by the Natural Science Foundation of Guangxi Province (No. 0731053)Science Foundation for Youths of Guangxi Province (No. 0991089)Initiation Found of Hechi University (No. 2008QS-N022)
文摘A novel coordination polymer [Na2Cd(2,6-pyda)(N3)2(H2O)6]n (2,6-H2pyda = 2,6- pyridinedicarboxylic acid) has been synthesized and characterized by elemental analysis, IR and single-crystal X-ray diffraction. The crystal belongs to the monoclinic system, space group C2/c, with a = 24.416(4), b = 10.7638(17), c = 6.9224(11) A^°, β= 106.124(2)A^°, V = 1747.7(5) A^°3, Mr = 515.64, De= 1.960 g/cm^3,μ = 1.365 mm^-1, F(000) = 1024, Z = 4, the final R = 0.0426 and wR = 0.1320. In the title complex, there exist two kinds of metal centers in the structure, cadmium ions and sodium ions. The Cd(Ⅱ) atom shows a distorted pentagonal-dipyramidal geometry defined by two O and one N atoms from one deprotonated pyda ligand and four N atoms from four μ-1,1,3 azido groups. The adjacent cadmium atoms are bridged via two μ-1,1,3 azido groups, along the c axis to afford an extended chain. There is also a 2D network which is comprised of binuclear subunits [NaE(H2O)6] connected by O atoms from coordinated water between the adjacent Cdn(pyda)n(Na)2n infinite chains. Furthermore, each cadmium atom is connected with four adjacent sodium atoms through the bridging N3- ligand in μ-1,3 patterns. Thus, the title complex exhibits a novel three-dimensional network structure.
文摘Ni(H_2O)_6][H_2N(C_2H_4)_2NH_2](SO_4)_2 is an inorganic-organic compound with a new open framework synthesized by hydrothermal method, and characterized by means of single-crystal diffraction and spectroscopic data. The compound crystallized in a monoclinic space group P2_1/n with a=1.29089(2) nm, b=1.06301(3) nm, c=1.33202(4) nm, β=114.0870(10)°, V=1.67127(8) nm 3, Z=4, and was solved by using the direct method and the least-squares refinement converged at R=0.0214[I>2σ(I)]. The structure consists of isolated Ni(H_2O)_6 octahedra and SO_4 tetrahedra, with both of them hydrogen-bonded to piperazine cations.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51476095 and 51206103the Innovation Program of Shanghai Municipal Education Commission under Grant No 13YZ128the Program for Professor of Special Appointment(Eastern Scholar) at Shanghai Institutions of Higher Learning
文摘Organic-inorganic nanojunctions can result in a selective scattering of charge carrier depending on their energy, which leads to a simultaneous increase in the Seebeck coefficient S and the power factor. In this work, the nanojunction is successfully employed at the organic-inorganic semiconductor interface of polyparaphenylene (PPP) and Zn1-xAgxO nanoparticles through the sol-gel method. The presence of nanoinclusions PPP in Zno.gAgoa 0 matrix is found to be effective in improving the figure of merit (ZT) by the dual effects of an increase in the power factor consistent with the heterojunetion effect and a reduction in thermal conductivity. Zno.gAgo.10/0.1 wt% PPP exhibits a maximum figure of merit, i.e., ZT= 0.22.
基金Supported by the National Natural Science Foundation of China(No.20871022)Natural Science Foundation of Liaoning Province,China(No.20061073)
文摘A novel inorganic-organic hybrid based on isopolyanion,{[Cu2(phen)2(μ-ox)][H2Mo8O26]}·4EtOH·Et2O(1) (phen=phenanthroline,ox=oxalate),was synthesized under open-air mild reaction conditions,and characterized by elemental analysis,IR,ICP,TG and single crystal X-ray diffraction analysis.The crystal structure belongs to triclinic system with space group Pī and cell parameters:a=1.1075(5) nm,b=1.1608(5) nm,c=1.3333(5) nm,α=91.683(5)o,β=113.996(5)o,γ=112.170(5)o,V=1.4159(10) nm3,Mr=2017.44,Z=1,Dc=2.366 g/cm3 and F(000)=980.0.The structure of hybrid 1 is a 1D chain constructed of alternating octamolybdate isopolyanions [β-(Mo8O26)4-] and oxalato-bridged dinuclear copper complex cations [Cu2(phen)2(μ-ox)]2+.Ultimately,a 3D supramolecular network was formed by hydrogen bond interactions among the adjacent chains.The result shows that hybrid 1 is the first example of inorganic-organic hybrid constructed from isopolyanion and oxalato-bridged dinuclear copper complex fragment (CCDC No.665101).
基金Project supported by the National Natural Science Foundation of China(22172022,21872021,21671033,21901135)。
文摘Four rare earth inorganic-organic hybrid compounds based on Keggin-type polyoxometalate {SiW_(12)}with general formula [{RE(DMF)_(4)(H_(2)O)_4RE(DMF)_(6)}_(2){SiW_(12)O_(40)}_(3)](RE = La(1),Pr(2),Sm(3),Eu(4),DMF=N,N-dimethylformamide) were synthesized by the conventional solution method.Structure analyses indicate that four compounds are isostructural and are all built from three [SiW_(12)O_(40)]^(4-) polyoxoanions and DMF ligands linked by RE^(3+).Compounds 1-4 are extremely sensitive to UV light and present excellent photochromic properties,in which the coloring and fading time of samples are both no more than 2 min,and the reversible coloring-fading process can be repeated for at least 10 cycles with little fatigue,suggesting that compounds 1-4 can be a series of fast-responsive and durable photochromic materials.Moreover,the solid-state photoluminescence spectra of compounds 3(Sm) and 4(Eu)display strong characteristic emissions of rare earth ions based on f-f transitions.Meanwhile,compound4(Eu) has a longer fluorescence lifetime up to 566.74 μs.Notably,co mpounds 3(Sm) and 4(Eu) exhibit the switchable luminescence behavior induced by photochromism,which allows them to be used as potential molecular switches.
基金Natural Science Foundation for Young Scientists of Henan Province,Grant/Award Number:202300410071Key Research Project of Henan Provincial Higher Education,Grant/Award Number:21A140007National Natural Science Foundation of China,Grant/Award Numbers:62174049,52003073,52102285。
文摘A 3D nanostructured scaffold as the host for zinc enables effective inhibition of anodic dendrite growth.However,the increased electrode/electrolyte interface area provided by using 3D matrices exacerbates the passivation and localized corrosion of the Zn anode,ultimately bringing about the degradation of the electrochemical performance.Herein,a nanoscale coating of inorganic-organic hybrid(α-In_(2)Se_(3)-Nafion)onto a flexible carbon nanotubes(CNTs)framework(ISNF@CNTs)is designed as a Zn plating/stripping scaffold to ensure uniform Zn nucleation,thus achieving a dendrite-free and durable Zn anode.The intro-duced inorganic-organic interfacial layer is dense and sturdy,which hinders the direct exposure of deposited Zn to electrolytes and mitigates the side reactions.Meanwhile,the zincophilic nature of ISNF can largely reduce the nucleation energy barrier and promote the ion-diffusion transportation.Consequently,the ISNF@CNTs@Zn electrode exhibits a low-voltage hysteresis and a superior cycling life(over 1500 h),with dendrite-free Zn-plating behaviors in a typical symmetrical cell test.Additionally,the superior feature of ISNF@CNTs@Zn anode is further demonstrated by Zn-MnO_(2)cells in both coin and flexible quasi-solid-state configurations.This work puts forward an inspired remedy for advanced Zn-ion batteries.
基金financially supported by the Natural Science Foundation of China(Grant Nos.20976059 and 21376093)Fundamental Research Funds for the Central Universities(Grant No.2013ZZ074)
文摘An organic silane acrylate resin (PMBK) was synthesized by free-radical solution polymerization using methyl methacrylate, butyl acrylate and (3-methacryloxypropyl)trimethoxysilane as monomers. Aluminum (AI) particles were then encapsulated in inorganic-organic hybrid films that were prepared by hydrolysis and condensation of PMBK and tetraethyl orthosilicate (TEOS) on the surface of AI pigments. Characterization results showed that PMBK and TEOS could simultaneously hydrolyze ancl condense with hydroxyl groups on the surface of the A1 particles to form composite AI particles coated with inorganic-organic hybrid films. Compared with raw AI particles, the corrosion resistance and adhesive properties of paint films containing the composite AI particles were improved greatly, while the glossiness of the paint films decreased slightly, from 48.6° to 47.0°. In alkaline media (pH 11 ), the volume of evolved H2 of composite AI particles was only 3.5 mL, whereas that of raw AI was 83.5 mL. The glossiness of paint films containing composite A1 particles decreased by 1.66% after immersion in alkaline media for 24h, whereas that of raw AI decreased by 14.82%. Peel-off tests of the paint films showed that the composite particles moved slightly away from the paint films. In contrast, the raw A1 particles were seriously desquamated, suggesting encapsulation of hybrid films can greatly improve the adhesive properties of A1 particles in paint films.
基金the National Natural Science Foundation of China(Nos.22278169 and 51973078)the Excellent scientific research and innovation team of the Education Department of Anhui Province(No.2022AH010028)the Major projects of the Education Department of Anhui Province(No.2022AH040068).
文摘The inorganic-organic S-scheme heterojunction photocatalyst demonstrates exceptional light absorption capacity,high photogenerated charge separation efficiency,and remarkable redox ability,while also inheriting diverse advantages of both inorganic and organic semiconductors.This paper provides a comprehensive review of recent advances in photocatalysis in relation to the inorganic-organic S-scheme heterojunction photocatalyst.Firstly,the fundamental aspects and benefits of the S-scheme heterojunction photocatalyst are outlined,followed by a discussion of several synthetic techniques for producing the inorganic-organic S-scheme heterojunction photocatalyst,as well as various advanced characterization methods that can verify the S-scheme heterojunction photocatalyst in both steady-state and transient processes.The impact of the inorganic-organic S-scheme heterojunction photocatalyst is illustrated with examples in fields such as carbon dioxide reduction,water splitting for hydrogen production,hydrogen peroxide synthesis,nitrogen fixation,organic pollutant degradation,organic transformation,and sterilization.Finally,suggestions are presented for designing the inorganic-organic S-scheme heterojunction photocatalyst and enhancing its photocatalytic performance.Undoubtedly,the inorganic-organic Sscheme heterojunction photocatalyst has emerged as a prominent and promising technology in the field of photocatalysis.