Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
Chlorine dioxide(ClO_(2))disinfection usually does not produce halogenated disinfection byproducts,but the formation of the inorganic by-product chlorite(ClO^(–)_(2))is a serious consideration.In this study,the ClO^(...Chlorine dioxide(ClO_(2))disinfection usually does not produce halogenated disinfection byproducts,but the formation of the inorganic by-product chlorite(ClO^(–)_(2))is a serious consideration.In this study,the ClO^(–)_(2)formation rule in the ClO_(2)disinfection of drinking water was investigated in the presence of three representative reductive inorganics and four natural organic matters(NOMs),respectively.Fe^(2+)and S^(2–)mainly reduced ClO_(2)to ClO^(–)_(2)at low concentrations.When ClO_(2)was consumed,the ClO^(–)_(2)would be further reduced by Fe^(2+)and S^(2–),leading to the decrease of ClO^(–)_(2).The reaction efficiency of Mn^(2+)with ClO_(2)was lower than that of Fe^(2+)and S^(2–).It might be the case that Mn O 2 generated by the reaction between Mn^(2+)and ClO_(2)had adsorption and catalytic oxidation on Mn^(2+).However,Mn^(2+)would not reduce ClO^(–)_(2).Among the four NOMs,humic acid and fulvic acid reacted with ClO_(2)actively,followed by bovine serum albumin,while sodium alginate had almost no reaction with ClO_(2).The maximum ClO^(–)_(2)yields of reductive inorganics(70%)was higher than that of NOM(around 60%).The lower the concentration of reductive substances,the more ClO^(–)_(2)could be produced by per unit concentration of reductive substances.The results of the actual water samples showed that both reductive inorganics and NOM played an important role in the formation of ClO^(–)_(2)in disinfection.展开更多
The nutrients from the East China Sea(ECS) through the Tsushima/Korea Strait(TS) strongly impact the eco system of the Japan Sea(JS).The complex origins of the Tsushima Warm Current and the various nutrient sources in...The nutrients from the East China Sea(ECS) through the Tsushima/Korea Strait(TS) strongly impact the eco system of the Japan Sea(JS).The complex origins of the Tsushima Warm Current and the various nutrient sources in the ECS result in complex spatial-temporal variations in nutrients in the TS.Using a physical-biological model with a tracking technique,we studied the effects of nutrient sources from the ECS on the TS.Among all the nutrient sources,the Kuroshio has the highest nutrient concentrations in the TS.Its maximum concentration occurs at the bottom,while those of rivers and atmospheric depo sition occur at the surface,and that of the Taiwan Strait occurs in the middle layer.The nutrient transport through the TS exhibits similar seasonal variations,as does the volume transport.The transport of nutrients from the Kuroshio accounts for more than 85% of the total.The transport of nutrients from the Taiwan Strait is greater during autumn and winter.The transport of dissolved inorganic nitrogen(DIN) from both rivers and atmospheric deposition through the TS peak in August.Nutrient transport cannot be equated with volume transport.The DIN in the less saline zone originates not only from rivers but also from atmospheric deposition and the Kuroshio.The transport of nutrients from the Taiwan Strait is not as significant as its volume transport in the TS.展开更多
The buried interface in the perovskite solar cell(PSC)has been regarded as a breakthrough to boost the power conversion efficiency and stability.However,a comprehensive manipulation of the buried interface in terms of...The buried interface in the perovskite solar cell(PSC)has been regarded as a breakthrough to boost the power conversion efficiency and stability.However,a comprehensive manipulation of the buried interface in terms of the transport layer,buried interlayer,and perovskite layer has been largely overlooked.Herein,we propose the use of a volatile heterocyclic compound called 2-thiopheneacetic acid(TPA)as a pre-buried additive in the buried interface to achieve cross-layer all-interface defect passivation through an in situ bottom-up infiltration diffusion strategy.TPA not only suppresses the serious interfacial nonradiative recombination losses by precisely healing the interfacial and underlying defects but also effectively enhances the quality of perovskite film and releases the residual strain of perovskite film.Owing to this versatility,TPA-tailored CsPbBr3 PSCs deliver a record efficiency of 11.23% with enhanced long-term stability.This breakthrough in manipulating the buried interface using TPA opens new avenues for further improving the performance and reliability of PSC.展开更多
Methane(CH_(4))is a potent greenhouse gas that has a substantial impact on global warming due to its substantial influence on the greenhouse effect.Increasing extreme precipitation events,such as drought,attributable ...Methane(CH_(4))is a potent greenhouse gas that has a substantial impact on global warming due to its substantial influence on the greenhouse effect.Increasing extreme precipitation events,such as drought,attributable to global warming that caused by greenhouse gases,exert a profound impact on the intricate biological processes associated with CH_(4) uptake.Notably,the timing of extreme drought occurrence emerges as a pivotal factor influencing CH_(4) uptake,even when the degree of drought remains constant.However,it is still unclear how the growing season regulates the response of CH_(4) uptake to extreme drought.In an effort to bridge this knowledge gap,we conducted a field manipulative experiment to evaluate the impact of extreme drought on CH_(4) uptake during early,middle,and late growing stages in a temperate steppe of Inner Mongolia Autonomous Region,China.The result showed that all extreme drought consistently exerted positive effects on CH_(4) uptake regardless of seasonal timing.However,the magnitude of this effect varied depending on the timing of season,as evidenced by a stronger effect in early growing stage than in middle and late growing stages.Besides,the pathways of CH_(4) uptake were different from seasonal timing.Extreme drought affected soil physical-chemical properties and aboveground biomass(AGB),consequently leading to changes in CH_(4) uptake.The structural equation model showed that drought both in the early and middle growing stages enhanced CH_(4) uptake due to reduced soil water content(SWC),leading to a decrease in NO_(3)–-N and an increase in pmoA abundance.However,drought in late growing stage primarily enhanced CH_(4) uptake only by decreasing SWC.Our results suggested that seasonal timing significantly contributed to regulate the impacts of extreme drought pathways and magnitudes on CH_(4) uptake.The findings can provide substantial implications for understanding how extreme droughts affect CH_(4) uptake and improve the prediction of potential ecological consequence under future climate change.展开更多
Water scarcity and pollution pose a threat to the sustainable development of cities and society.Therefore,it is crucial to analyze the hydrochemical characteristics and carbon dynamics of waterdeficient areas.Taking t...Water scarcity and pollution pose a threat to the sustainable development of cities and society.Therefore,it is crucial to analyze the hydrochemical characteristics and carbon dynamics of waterdeficient areas.Taking the Taiyuan section of Fenhe River as the research object,we systematically explored the hydrochemical characteristics of surface water and its evolutionary processes,as well as the ecological effect of algal carbonic anhydrase in carbon cycle using the hydrochemical evolution method and correlation analysis.The ternary diagram demonstrates that the main water chemical type in Fenhe River was SO^(2-)_(4)·Cl^(-)-Na^(+).The Gibbs and end-member diagrams of each ion display that the chemical composition of surface water was mainly controlled by silicate decomposition.The chemical ions originated mainly from dissolution of some minerals,such as plagioclase,halite,dolomite,calcite,and gypsum.The diatoms had a lower CO_(2)requirement because they exhibited a higher abundance at a lower partial pressure of CO_(2)(p CO_(2)).However,high CO_(2)concentration had a positive effect on cyanobacteria,which reduced the active transport of HCO_(3)^(-),saved the energy needed for this part of active transport,and indirectly improved the overall photosynthetic efficiency of algae.Carbonic anhydrase(CA)activity was significantly negatively correlated with p CO_(2)and positively correlated with HCO_(3)^(-)concentration,indicating that CA in water promoted the conversion of CO_(2)to HCO_(3)^(-).The HCO_(3)^(-)generated from this process continued to participate in the erosion of silicate rocks,sequestering CO_(2)in the form of Ca CO_(3),which has a non-negligible impact on the carbon sink in the Fenhe River.These consequences may have important implications for the biogeochemical cycling occurring in urban water.展开更多
Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restri...Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restricting the development of energy-saving coal gasification technologies.The multiscale analysis of FS performed in this study indicates typical grain size distribution,composition,crystalline structure,and chemical bonding characteristics.The FS primarily contained inorganic and carbon components(dry bases)and exhibited a"three-peak distribution"of the grain size and regular spheroidal as well as irregular shapes.The irregular particles were mainly adsorbed onto the structure and had a dense distribution and multiple pores and folds.The carbon constituents were primarily amorphous in structure,with a certain degree of order and active sites.C 1s XPS spectrum indicated the presence of C–C and C–H bonds and numerous aromatic structures.The inorganic components,constituting 90%of the total sample,were primarily silicon,aluminum,iron,and calcium.The inorganic components contained Si–O-Si,Si–O–Al,Si–O,SO_(4)^(2−),and Fe–O bonds.Fe 2p XPS spectrum could be deconvoluted into Fe 2p_(1/2) and Fe 2p_(3/2) peaks and satellite peaks,while Fe existed mainly in the form of Fe(III).The findings of this study will be beneficial in resource utilization and formation mechanism of fine slag in future.展开更多
CsPbI_(2)Br perovskite solar cells(PSCs)have drawn tremendous attention due to their suitable bandgap,excellent photothermal stability,and great potential as an ideal candidate for top cells in tandem solar cells.Howe...CsPbI_(2)Br perovskite solar cells(PSCs)have drawn tremendous attention due to their suitable bandgap,excellent photothermal stability,and great potential as an ideal candidate for top cells in tandem solar cells.However,the abundant defects at the buried interface and perovskite layer induce severe charge recombination,resulting in the open-circuit voltage(V_(oc))output and stability much lower than anticipated.Herein,a novel buried interface management strategy is developed to regulate interfacial carrier dynamics and CsPbI_(2)Br defects by introducing ammonium tetrafluoroborate(NH_(4)BF_(4)),thereby resulting in both high CsPbI_(2)Br crystallization and minimized interfacial energy losses.Specifically,NH_(4)^(+)ions could preferentially heal hydroxyl groups on the SnO_(2)surface and balance energy level alignment between SnO_(2)and CsPbI_(2)Br,enhancing charge transport efficiency,while BF_(4)^(-)anions as a quasi-halogen regulate crystal growth of CsPbI_(2)Br,thus reducing perovskite defects.Additionally,it is proved that eliminating hydroxyl groups at the buried interface enhances the iodide migration activation energy of CsPbI_(2)Br for strengthening the phase stability.As a result,the optimized CsPbI_(2)Br PSCs realize a remarkable efficiency of 17.09%and an ultrahigh V_(oc)output of 1.43 V,which is one of the highest values for CsPbI_(2)Br PSCs.展开更多
To effectively remove n-propylbenzene(n-PBZ)and isopropylbenzene(i-PBZ)leaked into seawater using Rhinomonas reticulata S6A(a newly isolated marine microalga),the effects of three inorganic nutrients and four environm...To effectively remove n-propylbenzene(n-PBZ)and isopropylbenzene(i-PBZ)leaked into seawater using Rhinomonas reticulata S6A(a newly isolated marine microalga),the effects of three inorganic nutrients and four environmental factors on their degradation were determined after 7 d of inoculation.Results show that NaNO_(3) at 300 mg/L caused a higher removal efficiency of both n-PBZ and i-PBZ(44.79%and 39.26%),while for NaH_(2) PO_(4)·H_(2) O,greater removal rates of two PBZs(47.30%and 42.23%)were achieved at 30 and 20 mg/L,respectively.NaHCO_(3) supplementation(500-750 mg/L)resulted in a large reduction(43.67%-45.04%)in i-PBZ concentration.The change in seawater pH(from 6 to 9)did not affect the elimination of n-PBZ and i-PBZ.The most suitable salinity and temperature were 30 and 25-30℃,respectively,leading to the PBZs removal of~40%.Light intensity exhibited significant influence on elimination of PBZs,and the maximum removal efficiencies of 56.07%(n-PBZ)and 55.00%(i-PBZ)were recorded under 200 and 600μmol/(m^(2)·s),respectively.In addition,the microalga could still remove PBZs when it failed to grow well due to darkness,strong light,low temperature,or low salinity,which might mean that good growth of alga is not always a necessary condition for PBZs removal.Therefore,attention should be paid to the suitability of nutrient levels and environmental conditions(excluding pH)in seawater when using microalgae for bioremediating PBZs-contaminated seawater.展开更多
By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant p...By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA.展开更多
Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with hi...Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with high charge carrier mobility usually have planar and conjugated structures,thereby showing strong absorption in visible region.In this work,a new concept of incorporating transparent inorganic semiconductors is proposed for high-performance STOPVs.Copper(I)thiocyanate(CuSCN)is a visible-transparent inorganic semiconductor with an ionization potential of 5.45 eV and high hole mobility.The transparency of CuSCN benefits high average visible transmittance(AVT)of STOPVs.The energy levels of CuSCN as donor match those of near-infrared small molecule acceptor BTP-eC9,and the formed heterojunction exhibits an ability of exciton dissociation.High mobility of CuSCN contributes to a more favorable charge transport channel and suppresses charge recombination.The control STOPVs based on PM6/BTP-eC9 exhibit an AVT of 19.0%with a power conversion efficiency(PCE)of 12.7%.Partial replacement of PM6 with CuSCN leads to a 63%increase in transmittance,resulting in a higher AVT of 30.9%and a comparable PCE of 10.8%.展开更多
Inorganic binder used in casting process has the advantages of low odor,labor-friendly conditions,and relatively low cost,which is one of the main development directions for casting molding materials in the future.How...Inorganic binder used in casting process has the advantages of low odor,labor-friendly conditions,and relatively low cost,which is one of the main development directions for casting molding materials in the future.However,compared to organic binders(such as resin binders),inorganic binders exhibit lower bonding strength and are more sensitive to environmental humidity.This sensitivity poses challenges,particularly in the reclamation of used sand,thus limiting their broader application.In this paper,the research and application status of inorganic binders(mainly silicate inorganic binders)and their curing methods are summarized.In addition,the research and application of phosphate inorganic binders and 3D printing inorganic binders that are being developed are introduced.Meanwhile,a detailed comparative analysis is conducted on the challenging issue of“reclamation for used sand”in the application of inorganic binders.Finally,the development direction of inorganic binders is clarified.展开更多
Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce...Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce SnO_(2)film and passivate SnO_(2)defects,forming a structure similar to“reinforcedconcrete”with high tensile strength and fewer microcracks.Simultaneously,PAA is also introduced to the SnO_(2)/perovskite interface as a“buffer spring”torelease residual strain,which also acts as a“dual-side passivation interlayer”to passivate the oxygen vacancies of SnO_(2)and Pb dangling bonds in halideperovskites.As a result,the best inorganic CsPbBr_(3)PSC achieves a championpower conversion efficiency of 10.83%with an ultrahigh open-circuit voltageof 1.674 V.The unencapsulated PSC shows excellent stability under 80%relative humidity and 80℃over 120 days.展开更多
Traumatic brain injury and Alzheimer's disease share pathological similarities,including neuronal loss,amyloid-βdeposition,tau hyperphosphorylation,blood-brain barrier dysfunction,neuroinflammation,and cognitive ...Traumatic brain injury and Alzheimer's disease share pathological similarities,including neuronal loss,amyloid-βdeposition,tau hyperphosphorylation,blood-brain barrier dysfunction,neuroinflammation,and cognitive deficits.Furthermore,traumatic brain injury can exacerbate Alzheimer's disease-like pathologies,potentially leading to the development of Alzheimer's disease.Nanocarriers offer a potential solution by facilitating the delive ry of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease.U nlike traditional approaches to neuro regeneration,this is a molecula r-targeted strategy,thus avoiding non-specific drug actions.This review focuses on the use of nanocarrier systems for the efficient and precise delive ry of siRNAs,discussing the advantages,challenges,and future directions.In principle,siRNAs have the potential to target all genes and non-targetable protein s,holding significant promise for treating various diseases.Among the various therapeutic approaches currently available for neurological diseases,siRNA gene silencing can precisely"turn off"the expression of any gene at the genetic level,thus radically inhibiting disease progression;however,a significant challenge lies in delivering siRNAs across the blood-brain barrier.Nanoparticles have received increasing attention as an innovative drug delive ry tool fo r the treatment of brain diseases.They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier,targeted drug delivery,enhanced drug stability,and multifunctional therapy.The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach.Although this strategy is still in the preclinical exploration stage,it is expected to achieve clinical translation in the future,creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.展开更多
Different from rivers in humid areas,the variability of riverine CO_(2) system in arid areas is heavily impacted by anthropogenic disturbance with the increasing urbanization and water withdrawals.In this study,the wa...Different from rivers in humid areas,the variability of riverine CO_(2) system in arid areas is heavily impacted by anthropogenic disturbance with the increasing urbanization and water withdrawals.In this study,the water chemistry and the controls of carbonate system in an urbanized river(the Fenhe River)on the semi-arid Loess Plateau were analyzed.The water chemistry of the river water showed that the high dissolved inorganic carbon(DIC)concentration(about 37 mg L^(-1))in the upstream with a karst land type was mainly sourced from carbonate weathering involved by H_(2)CO_(3) and H_(2)SO_(4),resulting in an oversaturated partial pressure of CO_(2)(pCO_(2))(about 800μatm).In comparison,damming resulted in the widespread appearance of non-free flowing river segments,and aquatic photosynthesis dominated the DIC and pCO_(2) spatiality demonstrated by the enriched stable isotope of DIC(δ^(13)CDIC).Especially in the mid-downstream flowing through major cities in warm and low-runoff August,some river segments even acted as an atmospheric CO_(2) sink.The noteworthy is wastewater input leading to a sudden increase in DIC(>55 mg L^(-1))and pCO_(2)(>4500μatm)in the downstream of Taiyuan City,and in cold November the increased DIC even extended to the outlet of the river.Our results highlight the effects of aquatic production induced by damming and urban sewage input on riverine CO_(2) system in semi-arid areas,and reducing sewage discharge may mitigate CO_(2) emission from the rivers.展开更多
Polymer-based composite electrolytes composed of three-dimensional Li_(6.4)La_(3)Zr_(2)Al_(0.2)O_(12)(3D-LLZAO)have attracted increasing attention due to their continuous ion conduction and satisfactory mechanical pro...Polymer-based composite electrolytes composed of three-dimensional Li_(6.4)La_(3)Zr_(2)Al_(0.2)O_(12)(3D-LLZAO)have attracted increasing attention due to their continuous ion conduction and satisfactory mechanical properties.However,the organic/inorganic interface is incompatible,resulting in slow lithium-ion transport at the interface.Therefore,the compatibility of organic/inorganic interface is an urgent problem to be solved.Inspired by the concept of“gecko eaves”,polymer-based composite solid electrolytes with dense interface structures were designed.The bridging of organic/inorganic interfaces was established by introducing silane coupling agent(3-chloropropyl)trimethoxysilane(CTMS)into the PEO-3D-LLZAO(PL)electrolyte.The in-situ coupling reaction improves the interface affinity,strengthens the organic/inorganic interaction,reduces the interface resistance,and thus achieves an efficient interface ion transport network.The prepared PEO-3D-LLZAO-CTMS(PLC)electrolyte exhibits enhanced ionic conductivity of 6.04×10^(-4)S cm^(-1)and high ion migration number(0.61)at 60℃and broadens the electrochemical window(5.1 V).At the same time,the PLC electrolyte has good thermal stability and high mechanical properties.Moreover,the Li Fe PO_(4)|PLC|Li battery has excellent rate performance and cycling stability with a capacity decay rate of 2.2%after 100 cycles at 60℃and 0.1 C.These advantages of PLC membranes indicate that this design approach is indeed practical,and the in-situ coupling method provides a new approach to address interface compatibility issues.展开更多
Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potentia...Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potential.However,the relationship linking soil N_(2)O emissions to nitrogen functional genes during various fertilization treatments in water-saving paddy fields has rarely been investigated.Furthermore,the mitigation potential of organic fertilizer substitution on N_(2)O emissions and the microbial mechanism in rice fields must be further elucidated.Our study examined how soil N_(2)O emissions were affected by related functional microorganisms(ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),nirS,nirK and nosZ)to various fertilization treatments in a rice field in southeast China over two years.In this study,three fertilization regimes were applied to rice cultivation:a no nitrogen(N)(Control),an inorganic N(Ni),and an inorganic N with partial N substitution with organic manure(N_(i)+N_(o)).Over two rice-growing seasons,cumulative N_(2)O emissions averaged 0.47,4.62 and 4.08 kg ha^(−1)for the Control,Ni and N_(i)+N_(o)treatments,respectively.In comparison to the Ni treatment,the N_(i)+N_(o)fertilization regime considerably reduced soil N_(2)O emissions by 11.6%while maintaining rice yield,with a lower N_(2)O emission factor(EF)from fertilizer N of 0.95%.Nitrogen fertilization considerably raised the AOB,nirS,nirK and nosZ gene abundances,in comparison to the Control treatment.Moreover,the substitution of organic manure for inorganic N fertilizer significantly decreased AOB and nirS gene abundances and increased nosZ gene abundance.The AOB responded to N fertilization more sensitively than the AOA.Total N_(2)O emissions significantly correlated positively with AOB and nirS gene abundances while having a negative correlation with nosZ gene abundance and the nosZ/nirS ratio across N-fertilized plots.In summary,we conclude that organic manure substitution for inorganic N fertilizer decreased soil N_(2)O emissions primarily by changing the soil NO_(3)^(−)-N,pH and DOC levels,thus inhibiting the activities of ammonia oxidation in nitrification and nitrite reduction in denitrification,and strengthening N_(2)O reduction in denitrification from water-saving rice paddies.展开更多
We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to p...We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).展开更多
BACKGROUND The clinical effects and detailed roles of long non-coding RNA(LncRNA)steroid receptor RNA activator 1(SRA1)in esophageal squamous cell carcinoma(ESCC)remain ambiguous.In the present study,the complementary...BACKGROUND The clinical effects and detailed roles of long non-coding RNA(LncRNA)steroid receptor RNA activator 1(SRA1)in esophageal squamous cell carcinoma(ESCC)remain ambiguous.In the present study,the complementary sites between lncRNA SRA1,miRNA-363-5p,and phospholysine phosphohistidine inorganic pyrophosphate phosphatase(LHPP)predicted via bioinformatics analysis stimulated us to hypothesize that miRNA-363-5p/LHPP axis might be required for SRA1-mediated ESCC progression.AIM To investigate the molecular events of SRA1 in the malignant behavior in ESCC.METHODS Thirty-eight ESCC tissues and paired adjacent normal tissues were acquired.SRA1 expression was detected in ESCC tissues and cell lines using quantitative reverse transcription-polymerase chain reaction.Cell counting Kit-8 assay,transwell invasion assay,glycolysis assay,and xenograft tumor model were performed to address the malignant biological behaviors of ESCC cells after the introduction of SRA1.The t-test and theχ2 test were used for comparison between groups.Survival curve analysis was performed using the Kaplan-Meier method.RESULTS SRA1 downregulation was identified in ESCC.ESCC patients exhibiting a low SRA1 expression faced shorter overall survival than those with a high SRA1 expression.The introduction of SRA1 inhibited cell proliferation,glucose uptake,and lactate production in ESCC.In vivo,the growth of ESCC was hindered by SRA1 overexpression.Then,SRA1 overexpresses the LHPP by inhibiting miRNA-363-5p.Lastly,the introduction of small interfering RNA si-LHPP or miRNA-363-5p mimic could abrogate the inhibition roles triggered by SRA1.CONCLUSION SRA1 inhibits the oncogenicity of ESCC via miRNA-363-5p/LHPP axis.The SRA1/miRNA-363-5p/LHPP pathway may be a therapeutic target for ESCC.展开更多
Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing ...Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing the role of collaborative education.In order to realize the seamless integration of inorganic and analytical chemistry courses and ideological and political education,this paper summarizes the current situation of ideological and political research on inorganic and analytical chemistry courses in three major databases in China(VIP,CNKI and Wanfang),and sorts out the knowledge points,ideological and political elements and educational goals according to the content of the course chapters,to provide a basic guarantee for the ideological and political education construction of the course.展开更多
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
基金supported by the National Key Research and Development Program of China(No.2018YFD0900805)the Practice Innovation Program of Postgraduates in Jiangsu Province(No.SJCX20_0306)。
文摘Chlorine dioxide(ClO_(2))disinfection usually does not produce halogenated disinfection byproducts,but the formation of the inorganic by-product chlorite(ClO^(–)_(2))is a serious consideration.In this study,the ClO^(–)_(2)formation rule in the ClO_(2)disinfection of drinking water was investigated in the presence of three representative reductive inorganics and four natural organic matters(NOMs),respectively.Fe^(2+)and S^(2–)mainly reduced ClO_(2)to ClO^(–)_(2)at low concentrations.When ClO_(2)was consumed,the ClO^(–)_(2)would be further reduced by Fe^(2+)and S^(2–),leading to the decrease of ClO^(–)_(2).The reaction efficiency of Mn^(2+)with ClO_(2)was lower than that of Fe^(2+)and S^(2–).It might be the case that Mn O 2 generated by the reaction between Mn^(2+)and ClO_(2)had adsorption and catalytic oxidation on Mn^(2+).However,Mn^(2+)would not reduce ClO^(–)_(2).Among the four NOMs,humic acid and fulvic acid reacted with ClO_(2)actively,followed by bovine serum albumin,while sodium alginate had almost no reaction with ClO_(2).The maximum ClO^(–)_(2)yields of reductive inorganics(70%)was higher than that of NOM(around 60%).The lower the concentration of reductive substances,the more ClO^(–)_(2)could be produced by per unit concentration of reductive substances.The results of the actual water samples showed that both reductive inorganics and NOM played an important role in the formation of ClO^(–)_(2)in disinfection.
基金The National Natural Science Foundation of China under contract Nos 42006018, 41876018 and 42176198the Grants-in-Aid for Scientific Research [MEXT KAKENHI] under contract No.22H05206the Tianjin Municipal Education Commission Scientific Research Project under contract No.2019KJ219。
文摘The nutrients from the East China Sea(ECS) through the Tsushima/Korea Strait(TS) strongly impact the eco system of the Japan Sea(JS).The complex origins of the Tsushima Warm Current and the various nutrient sources in the ECS result in complex spatial-temporal variations in nutrients in the TS.Using a physical-biological model with a tracking technique,we studied the effects of nutrient sources from the ECS on the TS.Among all the nutrient sources,the Kuroshio has the highest nutrient concentrations in the TS.Its maximum concentration occurs at the bottom,while those of rivers and atmospheric depo sition occur at the surface,and that of the Taiwan Strait occurs in the middle layer.The nutrient transport through the TS exhibits similar seasonal variations,as does the volume transport.The transport of nutrients from the Kuroshio accounts for more than 85% of the total.The transport of nutrients from the Taiwan Strait is greater during autumn and winter.The transport of dissolved inorganic nitrogen(DIN) from both rivers and atmospheric deposition through the TS peak in August.Nutrient transport cannot be equated with volume transport.The DIN in the less saline zone originates not only from rivers but also from atmospheric deposition and the Kuroshio.The transport of nutrients from the Taiwan Strait is not as significant as its volume transport in the TS.
基金This work was supported by the National Natural Science Foundation of China(62104136,22179051)the National Key Research and Development Program of China(2021YFE0111000)+3 种基金Project of Shandong Province Higher Educational Young Innovative Team(2022KJ218)China Postdoctoral Science Foundation(2023M732104)Qingdao Postdoctoral Funding Program(QDBSH20220201002)Postdoctoral Innovation Project of Shandong Province(SDCX-ZG-202303032).
文摘The buried interface in the perovskite solar cell(PSC)has been regarded as a breakthrough to boost the power conversion efficiency and stability.However,a comprehensive manipulation of the buried interface in terms of the transport layer,buried interlayer,and perovskite layer has been largely overlooked.Herein,we propose the use of a volatile heterocyclic compound called 2-thiopheneacetic acid(TPA)as a pre-buried additive in the buried interface to achieve cross-layer all-interface defect passivation through an in situ bottom-up infiltration diffusion strategy.TPA not only suppresses the serious interfacial nonradiative recombination losses by precisely healing the interfacial and underlying defects but also effectively enhances the quality of perovskite film and releases the residual strain of perovskite film.Owing to this versatility,TPA-tailored CsPbBr3 PSCs deliver a record efficiency of 11.23% with enhanced long-term stability.This breakthrough in manipulating the buried interface using TPA opens new avenues for further improving the performance and reliability of PSC.
基金This study was funded by the National Natural Science Foundation of China(42041005,U20A2050,U21A20240)the Weiqiao-UCAS(University of Chinese Academy of Sciences)Special Projects on Low-Carbon Technology Development(GYY-DTFZ-2022-006)the Fundamental Research Funds for the Central Universities(E1E40607).
文摘Methane(CH_(4))is a potent greenhouse gas that has a substantial impact on global warming due to its substantial influence on the greenhouse effect.Increasing extreme precipitation events,such as drought,attributable to global warming that caused by greenhouse gases,exert a profound impact on the intricate biological processes associated with CH_(4) uptake.Notably,the timing of extreme drought occurrence emerges as a pivotal factor influencing CH_(4) uptake,even when the degree of drought remains constant.However,it is still unclear how the growing season regulates the response of CH_(4) uptake to extreme drought.In an effort to bridge this knowledge gap,we conducted a field manipulative experiment to evaluate the impact of extreme drought on CH_(4) uptake during early,middle,and late growing stages in a temperate steppe of Inner Mongolia Autonomous Region,China.The result showed that all extreme drought consistently exerted positive effects on CH_(4) uptake regardless of seasonal timing.However,the magnitude of this effect varied depending on the timing of season,as evidenced by a stronger effect in early growing stage than in middle and late growing stages.Besides,the pathways of CH_(4) uptake were different from seasonal timing.Extreme drought affected soil physical-chemical properties and aboveground biomass(AGB),consequently leading to changes in CH_(4) uptake.The structural equation model showed that drought both in the early and middle growing stages enhanced CH_(4) uptake due to reduced soil water content(SWC),leading to a decrease in NO_(3)–-N and an increase in pmoA abundance.However,drought in late growing stage primarily enhanced CH_(4) uptake only by decreasing SWC.Our results suggested that seasonal timing significantly contributed to regulate the impacts of extreme drought pathways and magnitudes on CH_(4) uptake.The findings can provide substantial implications for understanding how extreme droughts affect CH_(4) uptake and improve the prediction of potential ecological consequence under future climate change.
基金Supported by the Fundamental Research Program of Shanxi Province(Nos.202103021223266,202203021211313,202303021211114,202303021222246)the Excellent Doctoral Research Project in Shanxi Province(No.QZX-2023005)the Shanxi Scientific and Technological Innovation Team of Halophiles Resources Utilization(No.202204051001035)。
文摘Water scarcity and pollution pose a threat to the sustainable development of cities and society.Therefore,it is crucial to analyze the hydrochemical characteristics and carbon dynamics of waterdeficient areas.Taking the Taiyuan section of Fenhe River as the research object,we systematically explored the hydrochemical characteristics of surface water and its evolutionary processes,as well as the ecological effect of algal carbonic anhydrase in carbon cycle using the hydrochemical evolution method and correlation analysis.The ternary diagram demonstrates that the main water chemical type in Fenhe River was SO^(2-)_(4)·Cl^(-)-Na^(+).The Gibbs and end-member diagrams of each ion display that the chemical composition of surface water was mainly controlled by silicate decomposition.The chemical ions originated mainly from dissolution of some minerals,such as plagioclase,halite,dolomite,calcite,and gypsum.The diatoms had a lower CO_(2)requirement because they exhibited a higher abundance at a lower partial pressure of CO_(2)(p CO_(2)).However,high CO_(2)concentration had a positive effect on cyanobacteria,which reduced the active transport of HCO_(3)^(-),saved the energy needed for this part of active transport,and indirectly improved the overall photosynthetic efficiency of algae.Carbonic anhydrase(CA)activity was significantly negatively correlated with p CO_(2)and positively correlated with HCO_(3)^(-)concentration,indicating that CA in water promoted the conversion of CO_(2)to HCO_(3)^(-).The HCO_(3)^(-)generated from this process continued to participate in the erosion of silicate rocks,sequestering CO_(2)in the form of Ca CO_(3),which has a non-negligible impact on the carbon sink in the Fenhe River.These consequences may have important implications for the biogeochemical cycling occurring in urban water.
基金Scientific Research Foundation for the Introduction of Talent in Anhui University of Science and Technology(2023yjrc90)Graduate Research Project of Higher Education in Anhui Province(YJS20210377)+2 种基金Postgraduate Innovation Fund of Anhui University of Science and Technology(2021CX1002)University Synergy Innovation Program of Anhui Province(GXXT-2020-006)National Science Fund for Young Scientists(52200139).
文摘Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restricting the development of energy-saving coal gasification technologies.The multiscale analysis of FS performed in this study indicates typical grain size distribution,composition,crystalline structure,and chemical bonding characteristics.The FS primarily contained inorganic and carbon components(dry bases)and exhibited a"three-peak distribution"of the grain size and regular spheroidal as well as irregular shapes.The irregular particles were mainly adsorbed onto the structure and had a dense distribution and multiple pores and folds.The carbon constituents were primarily amorphous in structure,with a certain degree of order and active sites.C 1s XPS spectrum indicated the presence of C–C and C–H bonds and numerous aromatic structures.The inorganic components,constituting 90%of the total sample,were primarily silicon,aluminum,iron,and calcium.The inorganic components contained Si–O-Si,Si–O–Al,Si–O,SO_(4)^(2−),and Fe–O bonds.Fe 2p XPS spectrum could be deconvoluted into Fe 2p_(1/2) and Fe 2p_(3/2) peaks and satellite peaks,while Fe existed mainly in the form of Fe(III).The findings of this study will be beneficial in resource utilization and formation mechanism of fine slag in future.
基金supported by the National Natural Science Foundation of China(22379010,22109166,22309191)Chinese Academy of Sciences。
文摘CsPbI_(2)Br perovskite solar cells(PSCs)have drawn tremendous attention due to their suitable bandgap,excellent photothermal stability,and great potential as an ideal candidate for top cells in tandem solar cells.However,the abundant defects at the buried interface and perovskite layer induce severe charge recombination,resulting in the open-circuit voltage(V_(oc))output and stability much lower than anticipated.Herein,a novel buried interface management strategy is developed to regulate interfacial carrier dynamics and CsPbI_(2)Br defects by introducing ammonium tetrafluoroborate(NH_(4)BF_(4)),thereby resulting in both high CsPbI_(2)Br crystallization and minimized interfacial energy losses.Specifically,NH_(4)^(+)ions could preferentially heal hydroxyl groups on the SnO_(2)surface and balance energy level alignment between SnO_(2)and CsPbI_(2)Br,enhancing charge transport efficiency,while BF_(4)^(-)anions as a quasi-halogen regulate crystal growth of CsPbI_(2)Br,thus reducing perovskite defects.Additionally,it is proved that eliminating hydroxyl groups at the buried interface enhances the iodide migration activation energy of CsPbI_(2)Br for strengthening the phase stability.As a result,the optimized CsPbI_(2)Br PSCs realize a remarkable efficiency of 17.09%and an ultrahigh V_(oc)output of 1.43 V,which is one of the highest values for CsPbI_(2)Br PSCs.
基金Supported by the National Natural Science Foundation of China(No.42077335)。
文摘To effectively remove n-propylbenzene(n-PBZ)and isopropylbenzene(i-PBZ)leaked into seawater using Rhinomonas reticulata S6A(a newly isolated marine microalga),the effects of three inorganic nutrients and four environmental factors on their degradation were determined after 7 d of inoculation.Results show that NaNO_(3) at 300 mg/L caused a higher removal efficiency of both n-PBZ and i-PBZ(44.79%and 39.26%),while for NaH_(2) PO_(4)·H_(2) O,greater removal rates of two PBZs(47.30%and 42.23%)were achieved at 30 and 20 mg/L,respectively.NaHCO_(3) supplementation(500-750 mg/L)resulted in a large reduction(43.67%-45.04%)in i-PBZ concentration.The change in seawater pH(from 6 to 9)did not affect the elimination of n-PBZ and i-PBZ.The most suitable salinity and temperature were 30 and 25-30℃,respectively,leading to the PBZs removal of~40%.Light intensity exhibited significant influence on elimination of PBZs,and the maximum removal efficiencies of 56.07%(n-PBZ)and 55.00%(i-PBZ)were recorded under 200 and 600μmol/(m^(2)·s),respectively.In addition,the microalga could still remove PBZs when it failed to grow well due to darkness,strong light,low temperature,or low salinity,which might mean that good growth of alga is not always a necessary condition for PBZs removal.Therefore,attention should be paid to the suitability of nutrient levels and environmental conditions(excluding pH)in seawater when using microalgae for bioremediating PBZs-contaminated seawater.
基金Funded by the Natural Science Foundation of Guangdong(Nos.2014A030313241,2014B090901068,and 2016A010103003)。
文摘By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA.
基金financially supported by the Sichuan Science and Technology Program (2023YFH0086, 2023YFH0085, 2023YFH0087 and 2023NSFSC0990)the State Key Laboratory of Polymer Materials Engineering (sklpme2022-3-02 and sklpme2023-2-11)the Tibet Foreign Experts Program (2022wz002)
文摘Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with high charge carrier mobility usually have planar and conjugated structures,thereby showing strong absorption in visible region.In this work,a new concept of incorporating transparent inorganic semiconductors is proposed for high-performance STOPVs.Copper(I)thiocyanate(CuSCN)is a visible-transparent inorganic semiconductor with an ionization potential of 5.45 eV and high hole mobility.The transparency of CuSCN benefits high average visible transmittance(AVT)of STOPVs.The energy levels of CuSCN as donor match those of near-infrared small molecule acceptor BTP-eC9,and the formed heterojunction exhibits an ability of exciton dissociation.High mobility of CuSCN contributes to a more favorable charge transport channel and suppresses charge recombination.The control STOPVs based on PM6/BTP-eC9 exhibit an AVT of 19.0%with a power conversion efficiency(PCE)of 12.7%.Partial replacement of PM6 with CuSCN leads to a 63%increase in transmittance,resulting in a higher AVT of 30.9%and a comparable PCE of 10.8%.
基金supported by the National Natural Science Foundation of China(Nos.52275334,52205361,51075163,and 50575085).
文摘Inorganic binder used in casting process has the advantages of low odor,labor-friendly conditions,and relatively low cost,which is one of the main development directions for casting molding materials in the future.However,compared to organic binders(such as resin binders),inorganic binders exhibit lower bonding strength and are more sensitive to environmental humidity.This sensitivity poses challenges,particularly in the reclamation of used sand,thus limiting their broader application.In this paper,the research and application status of inorganic binders(mainly silicate inorganic binders)and their curing methods are summarized.In addition,the research and application of phosphate inorganic binders and 3D printing inorganic binders that are being developed are introduced.Meanwhile,a detailed comparative analysis is conducted on the challenging issue of“reclamation for used sand”in the application of inorganic binders.Finally,the development direction of inorganic binders is clarified.
基金Qingdao Postdoctoral Funding Program,Grant/Award Number:QDBSH20220201002National Key Research and Development Program of China,Grant/Award Number:2021YFE0111000+1 种基金Project of Shandong Province Higher Educational Young Innovative Team,Grant/Award Number:2022KJ218National Natural Science Foundation of China,Grant/Award Numbers:62104136,22179051,22109053。
文摘Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce SnO_(2)film and passivate SnO_(2)defects,forming a structure similar to“reinforcedconcrete”with high tensile strength and fewer microcracks.Simultaneously,PAA is also introduced to the SnO_(2)/perovskite interface as a“buffer spring”torelease residual strain,which also acts as a“dual-side passivation interlayer”to passivate the oxygen vacancies of SnO_(2)and Pb dangling bonds in halideperovskites.As a result,the best inorganic CsPbBr_(3)PSC achieves a championpower conversion efficiency of 10.83%with an ultrahigh open-circuit voltageof 1.674 V.The unencapsulated PSC shows excellent stability under 80%relative humidity and 80℃over 120 days.
基金supported by Open Project of the Key Laboratory of Trauma and Orthopedics Research Medicine in Henan Province,No.HZKFKT20220504(to YZ)the National Natural Science Foundation of China,No.32000877(to YZ)and Open Scientific Research Program of Military Logistics,No.BLB20J009(to YZ)。
文摘Traumatic brain injury and Alzheimer's disease share pathological similarities,including neuronal loss,amyloid-βdeposition,tau hyperphosphorylation,blood-brain barrier dysfunction,neuroinflammation,and cognitive deficits.Furthermore,traumatic brain injury can exacerbate Alzheimer's disease-like pathologies,potentially leading to the development of Alzheimer's disease.Nanocarriers offer a potential solution by facilitating the delive ry of small interfering RNAs across the blood-brain barrier for the targeted silencing of key pathological genes implicated in traumatic brain injury and Alzheimer's disease.U nlike traditional approaches to neuro regeneration,this is a molecula r-targeted strategy,thus avoiding non-specific drug actions.This review focuses on the use of nanocarrier systems for the efficient and precise delive ry of siRNAs,discussing the advantages,challenges,and future directions.In principle,siRNAs have the potential to target all genes and non-targetable protein s,holding significant promise for treating various diseases.Among the various therapeutic approaches currently available for neurological diseases,siRNA gene silencing can precisely"turn off"the expression of any gene at the genetic level,thus radically inhibiting disease progression;however,a significant challenge lies in delivering siRNAs across the blood-brain barrier.Nanoparticles have received increasing attention as an innovative drug delive ry tool fo r the treatment of brain diseases.They are considered a potential therapeutic strategy with the advantages of being able to cross the blood-brain barrier,targeted drug delivery,enhanced drug stability,and multifunctional therapy.The use of nanoparticles to deliver specific modified siRNAs to the injured brain is gradually being recognized as a feasible and effective approach.Although this strategy is still in the preclinical exploration stage,it is expected to achieve clinical translation in the future,creating a new field of molecular targeted therapy and precision medicine for the treatment of Alzheimer's disease associated with traumatic brain injury.
基金supported by the National Natural Science Foundation of China (NSFC) (No.41376123)the Youth Project of Shanxi Basic Research (Nos.20210302124317,201901D211383)+1 种基金the Research and Promotion Project of Water Conservancy Science and Technology in Shanxi Province (No.2023GM41)the Science and Technology Innovation Fund of Shanxi Agricultural University (No.2018YJ21)。
文摘Different from rivers in humid areas,the variability of riverine CO_(2) system in arid areas is heavily impacted by anthropogenic disturbance with the increasing urbanization and water withdrawals.In this study,the water chemistry and the controls of carbonate system in an urbanized river(the Fenhe River)on the semi-arid Loess Plateau were analyzed.The water chemistry of the river water showed that the high dissolved inorganic carbon(DIC)concentration(about 37 mg L^(-1))in the upstream with a karst land type was mainly sourced from carbonate weathering involved by H_(2)CO_(3) and H_(2)SO_(4),resulting in an oversaturated partial pressure of CO_(2)(pCO_(2))(about 800μatm).In comparison,damming resulted in the widespread appearance of non-free flowing river segments,and aquatic photosynthesis dominated the DIC and pCO_(2) spatiality demonstrated by the enriched stable isotope of DIC(δ^(13)CDIC).Especially in the mid-downstream flowing through major cities in warm and low-runoff August,some river segments even acted as an atmospheric CO_(2) sink.The noteworthy is wastewater input leading to a sudden increase in DIC(>55 mg L^(-1))and pCO_(2)(>4500μatm)in the downstream of Taiyuan City,and in cold November the increased DIC even extended to the outlet of the river.Our results highlight the effects of aquatic production induced by damming and urban sewage input on riverine CO_(2) system in semi-arid areas,and reducing sewage discharge may mitigate CO_(2) emission from the rivers.
基金supported by the Key Program(U20A20235)funded by the National Natural Science Foundation of Chinathe National Natural Science Foundation of China(52171127,51974242)+3 种基金the Natural Science Basic Research Program of Shaanxi(2023-JC-QN-0595)the Regional Innovation Capability Guidance Program of Shaanxi(2022QFY10-06)the Key R&D Program of Xianyang Science and Technology Bureau(2021ZDYF-GY-0029)the Program of Xi’an Science and Technology Bureau(23GXFW0066)。
文摘Polymer-based composite electrolytes composed of three-dimensional Li_(6.4)La_(3)Zr_(2)Al_(0.2)O_(12)(3D-LLZAO)have attracted increasing attention due to their continuous ion conduction and satisfactory mechanical properties.However,the organic/inorganic interface is incompatible,resulting in slow lithium-ion transport at the interface.Therefore,the compatibility of organic/inorganic interface is an urgent problem to be solved.Inspired by the concept of“gecko eaves”,polymer-based composite solid electrolytes with dense interface structures were designed.The bridging of organic/inorganic interfaces was established by introducing silane coupling agent(3-chloropropyl)trimethoxysilane(CTMS)into the PEO-3D-LLZAO(PL)electrolyte.The in-situ coupling reaction improves the interface affinity,strengthens the organic/inorganic interaction,reduces the interface resistance,and thus achieves an efficient interface ion transport network.The prepared PEO-3D-LLZAO-CTMS(PLC)electrolyte exhibits enhanced ionic conductivity of 6.04×10^(-4)S cm^(-1)and high ion migration number(0.61)at 60℃and broadens the electrochemical window(5.1 V).At the same time,the PLC electrolyte has good thermal stability and high mechanical properties.Moreover,the Li Fe PO_(4)|PLC|Li battery has excellent rate performance and cycling stability with a capacity decay rate of 2.2%after 100 cycles at 60℃and 0.1 C.These advantages of PLC membranes indicate that this design approach is indeed practical,and the in-situ coupling method provides a new approach to address interface compatibility issues.
基金supported by the National Key Research and Development Program of China(2022YFD2300300)the National Natural Science Foundation of China(41907072)+1 种基金the Scientific Research Foundation of Zhejiang A&F University,China(2022LFR003)the Jiangsu Agriculture Science and Technology Innovation Fund,China(CX(21)3007).
文摘Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potential.However,the relationship linking soil N_(2)O emissions to nitrogen functional genes during various fertilization treatments in water-saving paddy fields has rarely been investigated.Furthermore,the mitigation potential of organic fertilizer substitution on N_(2)O emissions and the microbial mechanism in rice fields must be further elucidated.Our study examined how soil N_(2)O emissions were affected by related functional microorganisms(ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),nirS,nirK and nosZ)to various fertilization treatments in a rice field in southeast China over two years.In this study,three fertilization regimes were applied to rice cultivation:a no nitrogen(N)(Control),an inorganic N(Ni),and an inorganic N with partial N substitution with organic manure(N_(i)+N_(o)).Over two rice-growing seasons,cumulative N_(2)O emissions averaged 0.47,4.62 and 4.08 kg ha^(−1)for the Control,Ni and N_(i)+N_(o)treatments,respectively.In comparison to the Ni treatment,the N_(i)+N_(o)fertilization regime considerably reduced soil N_(2)O emissions by 11.6%while maintaining rice yield,with a lower N_(2)O emission factor(EF)from fertilizer N of 0.95%.Nitrogen fertilization considerably raised the AOB,nirS,nirK and nosZ gene abundances,in comparison to the Control treatment.Moreover,the substitution of organic manure for inorganic N fertilizer significantly decreased AOB and nirS gene abundances and increased nosZ gene abundance.The AOB responded to N fertilization more sensitively than the AOA.Total N_(2)O emissions significantly correlated positively with AOB and nirS gene abundances while having a negative correlation with nosZ gene abundance and the nosZ/nirS ratio across N-fertilized plots.In summary,we conclude that organic manure substitution for inorganic N fertilizer decreased soil N_(2)O emissions primarily by changing the soil NO_(3)^(−)-N,pH and DOC levels,thus inhibiting the activities of ammonia oxidation in nitrification and nitrite reduction in denitrification,and strengthening N_(2)O reduction in denitrification from water-saving rice paddies.
基金supported financially by the National Natural Science Foundation of China(41807102,U1710255-3 and 41907215)the Special Fund for Science and Technology Innovation Teams of Shanxi Province,China(202304051001042)the Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University,China(2022YQPYGC05)。
文摘We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).
基金Supported by Innovative Team of Jiangsu Province,No.CXTDA2017042Jiangsu Provincial Medical Youth Talent,No.QNRC2016508In-Hospital Project of Taizhou People's Hospital,No.ZL201930.
文摘BACKGROUND The clinical effects and detailed roles of long non-coding RNA(LncRNA)steroid receptor RNA activator 1(SRA1)in esophageal squamous cell carcinoma(ESCC)remain ambiguous.In the present study,the complementary sites between lncRNA SRA1,miRNA-363-5p,and phospholysine phosphohistidine inorganic pyrophosphate phosphatase(LHPP)predicted via bioinformatics analysis stimulated us to hypothesize that miRNA-363-5p/LHPP axis might be required for SRA1-mediated ESCC progression.AIM To investigate the molecular events of SRA1 in the malignant behavior in ESCC.METHODS Thirty-eight ESCC tissues and paired adjacent normal tissues were acquired.SRA1 expression was detected in ESCC tissues and cell lines using quantitative reverse transcription-polymerase chain reaction.Cell counting Kit-8 assay,transwell invasion assay,glycolysis assay,and xenograft tumor model were performed to address the malignant biological behaviors of ESCC cells after the introduction of SRA1.The t-test and theχ2 test were used for comparison between groups.Survival curve analysis was performed using the Kaplan-Meier method.RESULTS SRA1 downregulation was identified in ESCC.ESCC patients exhibiting a low SRA1 expression faced shorter overall survival than those with a high SRA1 expression.The introduction of SRA1 inhibited cell proliferation,glucose uptake,and lactate production in ESCC.In vivo,the growth of ESCC was hindered by SRA1 overexpression.Then,SRA1 overexpresses the LHPP by inhibiting miRNA-363-5p.Lastly,the introduction of small interfering RNA si-LHPP or miRNA-363-5p mimic could abrogate the inhibition roles triggered by SRA1.CONCLUSION SRA1 inhibits the oncogenicity of ESCC via miRNA-363-5p/LHPP axis.The SRA1/miRNA-363-5p/LHPP pathway may be a therapeutic target for ESCC.
基金Supported by 2020 Teaching Reform Research Project of Pingdingshan University(2020-JY05)School-level Ideological and Political Demonstration Course of Pingdingshan University in 2023-Ecological Engineering+1 种基金Science and Technology Research Project of Henan Provincial Department of Science and Technology(212102110189)High-level Talent Start-up Fund Project of Pingdingshan University(PXY-BSQD-202001).
文摘Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing the role of collaborative education.In order to realize the seamless integration of inorganic and analytical chemistry courses and ideological and political education,this paper summarizes the current situation of ideological and political research on inorganic and analytical chemistry courses in three major databases in China(VIP,CNKI and Wanfang),and sorts out the knowledge points,ideological and political elements and educational goals according to the content of the course chapters,to provide a basic guarantee for the ideological and political education construction of the course.