文中提出一种非隔离型软开关高增益准Z源DC-DC变换器。变换器具有输入电流连续、输入与输出供地、高电压增益以及开关器件应力小等优点。同时,变换器中所有开关管都工作在零电压开关(zero voltage switching,ZVS)条件下,所有二极管都工...文中提出一种非隔离型软开关高增益准Z源DC-DC变换器。变换器具有输入电流连续、输入与输出供地、高电压增益以及开关器件应力小等优点。同时,变换器中所有开关管都工作在零电压开关(zero voltage switching,ZVS)条件下,所有二极管都工作在零电压零电流开关(zero-voltage zero-current switching,ZVZCS)条件下,可以减小开关管的开关损耗以及二极管的反向恢复损耗。通过引入三耦合绕组提高变换器电压增益,同时,有源钳位电路的加入减小了开关管两端的电压尖峰。较小感值的耦合电感相应的铜损小、体积小,进而提高了变换器的效率和功率密度。深入分析变换器的工作模态,推导变换器的电压增益以及元器件的电压、电流应力,进行稳态分析和参数设计。最后,搭建一台100 kHz、200 W、38~380 V的实验样机,变换器在额定功率的效率为96.13%,实验结果与理论分析相吻合,证明所提变换器的可行性。展开更多
The robust global stabilization problem of a class of uncertain nonlinear systems with input unmodeled dynamics is considered using output feedback, where the uncertain nonlinear terms satisfy a far more relaxed condi...The robust global stabilization problem of a class of uncertain nonlinear systems with input unmodeled dynamics is considered using output feedback, where the uncertain nonlinear terms satisfy a far more relaxed condition than the existing triangulartype condition. Under the assumption that the input unmodeled dynamics is minimum-phase and of relative degree zero, a dynamic output compensator is explicitly constructed based on the nonseparation principle. An example illustrates the usefulness of the proposed method.展开更多
A new design scheme of stable adaptive fuzzy control for a class of nonlinear systems is proposed in this paper.The T-S fuzzy model is employed to represent the systems.First,the concept of the so-called parallel dist...A new design scheme of stable adaptive fuzzy control for a class of nonlinear systems is proposed in this paper.The T-S fuzzy model is employed to represent the systems.First,the concept of the so-called parallel distributed compensation (PDC) and linear matrix inequality (LMI) approach are employed to design the state feedback controller without considering the error caused by fuzzy modeling.Sufficient conditions with respect to decay rate α are derived in the sense of Lyapunov asymptotic stability.Finally,the error caused by fuzzy modeling is considered and the input-to-state stable (ISS) method is used to design the adaptive compensation term to reduce the effect of the modeling error.By the small-gain theorem,the resulting closed-loop system is proved to be input-to-state stable.Theoretical analysis verifies that the state converges to zero and all signals of the closed-loop systems are bounded.The effectiveness of the proposed controller design methodology is demonstrated through numerical simulation on the chaotic Henon system.展开更多
基金This work was supported by National Natural Science Foundation of China (No. 60710002)Program for Changjiang Scholars and Innovative Research Team in University
文摘The robust global stabilization problem of a class of uncertain nonlinear systems with input unmodeled dynamics is considered using output feedback, where the uncertain nonlinear terms satisfy a far more relaxed condition than the existing triangulartype condition. Under the assumption that the input unmodeled dynamics is minimum-phase and of relative degree zero, a dynamic output compensator is explicitly constructed based on the nonseparation principle. An example illustrates the usefulness of the proposed method.
基金supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.07KJB510125,08KJD510008)the Natural Science Foundation of Yancheng Teachers University(No.07YCKL062,08YCKL053)
文摘A new design scheme of stable adaptive fuzzy control for a class of nonlinear systems is proposed in this paper.The T-S fuzzy model is employed to represent the systems.First,the concept of the so-called parallel distributed compensation (PDC) and linear matrix inequality (LMI) approach are employed to design the state feedback controller without considering the error caused by fuzzy modeling.Sufficient conditions with respect to decay rate α are derived in the sense of Lyapunov asymptotic stability.Finally,the error caused by fuzzy modeling is considered and the input-to-state stable (ISS) method is used to design the adaptive compensation term to reduce the effect of the modeling error.By the small-gain theorem,the resulting closed-loop system is proved to be input-to-state stable.Theoretical analysis verifies that the state converges to zero and all signals of the closed-loop systems are bounded.The effectiveness of the proposed controller design methodology is demonstrated through numerical simulation on the chaotic Henon system.