In this paper, we propose a new input-to-state stable (ISS) synchronization method for chaotic behavior in nonlinear Bloch equations with external disturbance. Based on Lyapunov theory and linear matrix inequality ...In this paper, we propose a new input-to-state stable (ISS) synchronization method for chaotic behavior in nonlinear Bloch equations with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the ISS synchronization controller is presented to not only guarantee the asymptotic synchronization but also achieve the bounded synchronization error for any bounded disturbance. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation study is presented to demonstrate the effectiveness of the proposed synchronization scheme.展开更多
This paper reports a new simple four-dimensional(4 D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. T...This paper reports a new simple four-dimensional(4 D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. The proposed system exhibits various dynamical behaviors including chaotic, periodic, stable nature, and coexistence of various attractors. Numerous theoretical and numerical methods are used for the analyses of this system. The chaotic behavior of the new system is validated using circuit implementation. Further, the synchronization of the proposed systems is shown by designing an adaptive integrator backstepping controller. Numerical simulation validates the synchronization strategy.展开更多
The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lat...The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lateral stability of the vehicle, however, the effect of DYC can be improved a step further by applying the control of vehicle longitudinal velocity. In this paper, the relationship between the vehicle longitudinal velocity and lateral stability is studied, and the simulation results show that a decrease of 5 km/h of longitudinal velocity at a particular situation can bring 100° increasing of stable steering upper limit. A critical stable velocity considering the effect of steering and yaw rate measurement is defined to evaluate the risk of losing steer-ability or stability. A novel velocity pre-control method is proposed by using a hierarchical pre-control logic and is integrated with the traditional DYC system. The control algorithm is verified through a hardware in-the-loop simulation system. Double lane change(DLC) test results on both high friction coefficient(μ) and low μ roads show that by using the pre-control method, the steering effort in DLC test can be reduced by 38% and 51% and the peak value of brake pressure control can be reduced by 20% and 12% respectively on high μ and low μ roads, the lateral stability is also improved. This research proposes a novel DYC system with lighter control effort and better control effect.展开更多
This paper addresses the problems of input-to-state stabilization and integral input-to-state stabilization for a class of nonlinear impulsive delayed systems subject to exogenous dis-turbances.Since the information o...This paper addresses the problems of input-to-state stabilization and integral input-to-state stabilization for a class of nonlinear impulsive delayed systems subject to exogenous dis-turbances.Since the information of plant’s states,time delays,and exogenous disturbances is often hard to be obtained,the key design challenge,which we resolve,is the construction of a state observer-based controller.For this purpose,we firstly propose a corresponding observer which is independent of time delays and exogenous disturbances to reconstruct(or estimate)the plant’s states.And then based on the observations,we establish an observer-based control design for the plant to achieve the input-to-state stability(ISS)and integral-ISS(iISS)properties.With the help of the comparison principle and average impulse interval approach,some sufficient conditions are presented,and moreover,two different linear matrix inequalities(LMIs)based criteria are proposed to design the gain matrices.Finally,two numerical examples and their simulations are given to show the effectiveness of our theoretical results.展开更多
A new design scheme of stable adaptive fuzzy control for a class of nonlinear systems is proposed in this paper.The T-S fuzzy model is employed to represent the systems.First,the concept of the so-called parallel dist...A new design scheme of stable adaptive fuzzy control for a class of nonlinear systems is proposed in this paper.The T-S fuzzy model is employed to represent the systems.First,the concept of the so-called parallel distributed compensation (PDC) and linear matrix inequality (LMI) approach are employed to design the state feedback controller without considering the error caused by fuzzy modeling.Sufficient conditions with respect to decay rate α are derived in the sense of Lyapunov asymptotic stability.Finally,the error caused by fuzzy modeling is considered and the input-to-state stable (ISS) method is used to design the adaptive compensation term to reduce the effect of the modeling error.By the small-gain theorem,the resulting closed-loop system is proved to be input-to-state stable.Theoretical analysis verifies that the state converges to zero and all signals of the closed-loop systems are bounded.The effectiveness of the proposed controller design methodology is demonstrated through numerical simulation on the chaotic Henon system.展开更多
In order to realize the dynamic stable motion control for a leg-wheeled robot, this paper presents a layered control architecture. It is composed of three levels, i.e. the supervisor level, coordinator level and leg l...In order to realize the dynamic stable motion control for a leg-wheeled robot, this paper presents a layered control architecture. It is composed of three levels, i.e. the supervisor level, coordinator level and leg level. The supervisor level is for the task definition and planning, while the coordinator level does the dynamic stable control and the leg level executes the real-time control command. First, we build the efficient Newton-Euler dynamics equations of the robot. Then, the stability control is realized by properly distributing ground reaction forces applied by the legs. We also use Simplex method to optimize the ground reaction force distribution and verify the control method by experimental and numerical results.展开更多
The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. ...The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. How to select input variables Of the fuzzy logic controller and howto guarantee completeness of the output control are two of them. The last one is how to coordinatethe fuzzy logic controllers in integrate fuzzy logic stable control system. Simulating results prov that integrate fuzzy logic stable coatrol system of BTT missiles is sueccessful, and it can be widelyused in future.展开更多
The control of underactuated mechanical systems is very complex for the loss of its control inputs. The model of underactuated mechanical systems in a potential field is built with Lagrangian method and its structural...The control of underactuated mechanical systems is very complex for the loss of its control inputs. The model of underactuated mechanical systems in a potential field is built with Lagrangian method and its structural properties are analyzed in detail. A stable control approach is proposed for the class of underactuated mechanical systems. This approach is applied to an underactuated double-pendulum-type overhead crane and the simulation results illustrate the correctness of dynamics analysis and validity of the proposed control algorithm.展开更多
Highly efficient and stable hybrid white organic light-emitting diodes (HWOLEDs) with a mixed bipolar interlayer between fluorescent blue and phosphorescent yellow emitting layers are demonstrated. The bipolar inter...Highly efficient and stable hybrid white organic light-emitting diodes (HWOLEDs) with a mixed bipolar interlayer between fluorescent blue and phosphorescent yellow emitting layers are demonstrated. The bipolar interlayer is a mixture of p-type diphenyl (l0-phenyl-lOH-spiro [acridine-9,9'-fluoren]-3Lyl) phosphine oxide and n-type 2',2- (1,3,5-benzinetriyl)-tris(1-phenyl-l-H-benzimidazole). The electroluminance and Commission Internationale de l'Eclairage (CIE1931) coordinates' characteristics can be modulated easily by adjusting the ratio of the hole- predominated material to the electron-predominated material in the interlayer. The hybrid WOLED with a p-type:n-type ratio of 1:3 shows a maximum current efficiency and power efficiency of 61.1 ed/A and 55.8 lm/W, respectively, with warm white CIE coordinates of (0.34, 0.43). The excellent efficiency and adaptive CIE coordi- nates are attributed to the mixed interlayer with improved charge carrier balance, optimized exciton distribution, and enhanced harvesting of singlet and triplet excitons.展开更多
This study proposes a novel adaptive neural dynamic-based hybrid control strategy for stable subsatellite retrieval of two-body tethered satellite systems.The retrieval speed is given analytically,ensuring a libration...This study proposes a novel adaptive neural dynamic-based hybrid control strategy for stable subsatellite retrieval of two-body tethered satellite systems.The retrieval speed is given analytically,ensuring a libration-free steady state.To mitigate the potential libration motion,a general control input signal is generated by an adaptive neural-dynamic(AND)algorithm and executed by adjusting the retrieval speed and thruster on the subsatellite.To address the limited retrieval speed and improve the control performance,the thruster controller is manipulated according to a novel advanced state fuzzy control law based on higher-order libration states,whereas the remaining control input is allocated to the speed controller.The Lyapunov stability of the control strategy is demonstrated analytically.Numerical simulations validate the proposed control strategy,demonstrating well-allocated control inputs for both controllers and good control performance.展开更多
Considering the design problem of non-fragile decentralized H∞ controller with gain variations, the dynamic feedback controller by measurement feedback for uncertain linear systems is constructed and studied. The par...Considering the design problem of non-fragile decentralized H∞ controller with gain variations, the dynamic feedback controller by measurement feedback for uncertain linear systems is constructed and studied. The parameter uncertainties are considered to be unknown but norm bounded. The design procedures are investigated in terms of positive definite solutions to modify algebraic Riccati inequalities. Using information exchange among local controllers, the designed non-fragile decentralized H∞ controllers guarantee that the uncertain closed-loop linear systems are stable and with H∞ -norm bound on disturbance attenuation. A sufficient condition that there are such non-fragile H∞ controllers is obtained by algebraic Riccati inequalities. The approaches to solve modified algebraic Riccati inequalities are carried out preliminarily. Finally, a numerical example to show the validity of the proposed approach is given.展开更多
This paper mainly introduces an output control method with high stable precision of a large power IGBT arc welding inverter. Experiments indicate that this kind of control mode can effectively improve the static and d...This paper mainly introduces an output control method with high stable precision of a large power IGBT arc welding inverter. Experiments indicate that this kind of control mode can effectively improve the static and dynamic characteristics and stability of power supply system. And it can decrease the spatters in the welding process apparently. This power supply is especially suitable to automatic robot welding assembly line. It will be the developing direction of robot welding supply in the future.展开更多
The Kuhn-Tucker theorem in nondifferential form is a well-known classical optimality criterion for a convex programming problems which is true for a convex problem in the case when a Kuhn-Tucker vector exists. It is n...The Kuhn-Tucker theorem in nondifferential form is a well-known classical optimality criterion for a convex programming problems which is true for a convex problem in the case when a Kuhn-Tucker vector exists. It is natural to extract two features connected with the classical theorem. The first of them consists in its possible “impracticability” (the Kuhn-Tucker vector does not exist). The second feature is connected with possible “instability” of the classical theorem with respect to the errors in the initial data. The article deals with the so-called regularized Kuhn-Tucker theorem in nondifferential sequential form which contains its classical analogue. A proof of the regularized theorem is based on the dual regularization method. This theorem is an assertion without regularity assumptions in terms of minimizing sequences about possibility of approximation of the solution of the convex programming problem by minimizers of its regular Lagrangian, that are constructively generated by means of the dual regularization method. The major distinctive property of the regularized Kuhn-Tucker theorem consists that it is free from two lacks of its classical analogue specified above. The last circumstance opens possibilities of its application for solving various ill-posed problems of optimization, optimal control, inverse problems.展开更多
Objective:To evaluate the efficacy of Ginseng combined with conventional therapy for stable angina pectoris(SAP).Methods:From the Cochrane Library,Pubmed,Embase,Web of Science,CNKI(China National Knowledge Infrastruct...Objective:To evaluate the efficacy of Ginseng combined with conventional therapy for stable angina pectoris(SAP).Methods:From the Cochrane Library,Pubmed,Embase,Web of Science,CNKI(China National Knowledge Infrastructure),Wanfang Datebase,VIP(Chinese Scientific Journals Database),CBM(Chinese Biomedicine Database),we reviewed the clinical randomized controlled trial(RCT),after screening and assessing the risk of bias,used RevMan 5.3 and Stata 15.0 software to make the Meta-analysis.Results:Thirteen studies were included with 1176 cases,involving 606 cases in the experimental group and 570 in the control group.The results of Meta-analysis showed that Ginseng combined with conventional therapy significantly has obvious effect on clinical effective rate(RR=1.29,95%CI[1.21,1.36],P<0.00001);ECG effective rate(RR=1.35,95%CI[1.22,1.50],P<0.00001);number of angina attacks(MD=-1.77,95%CI[-2.64,-0.91],P<0.00001);duration of angina pectoris(MD=-2.16,95%CI[-2.54,-1.78],P<0.00001);nitroglycerin dosage(MD=-1.52,95%CI[-1.81,-1.23],P<0.00001),and it is better than using conventional therapy alone.Conclusion:Ginseng combined with conventional therapy for SAP can significantly improve clinical effective rate and ECG effective rate,reduce the number of angina attacks,shorten the duration of angina pectoris,and reduce nitroglycerin dosage.The development of ginseng-related proprietary Chinese medicines has good prospects.But due to the quality of studies is medium and low,it still needs to be confirmed by conducting high-quality RCTs.展开更多
Objective:To systematically evaluate the effect and safety of additional Yupingfeng powder combined with western medicine for the stable period of chronic obstructive pulmonary disease(COPD).Method:Databases including...Objective:To systematically evaluate the effect and safety of additional Yupingfeng powder combined with western medicine for the stable period of chronic obstructive pulmonary disease(COPD).Method:Databases including Pubmed、Web of Science、Cochrane Library、CNKI、VIP、CBM and Wanfang Data base,were searched for relevant randomized controlled trials.for Chinese and English literature about randomized controlled trials of additional Yupingfeng in the treatment of COPD on stable stage which were published from the establishment of the database to December 2019.Two researchers independently screened for,selected studies according to the inclusion and exclusion criteria and extracted data.Methodological quality was evaluated using the Cochrane Risk of Bias tool.Meta-analysis was performed using Revman 5.3 software.Results:Ninetine randomized controlled trials including 1511 patients with COPD were meta-analyzed.The total sample size was 1511.The results showed that the treatment grop with additional Yupingfeng powder could improve the clinical efficacy[OR=0.26,95%CI(0.18,0.37)],FEV1 percentage of the estimated value[MD=4.61,95%CI(2.43,6.79)],6MWD[MD=43.90,95%CI(29.48,58.32)]and patient's immunity IgA[MD=0.25,95%CI(0.17,0.34)]and can mitigate cough effectively[MD=-0.34,95%CI(-0.46,-0.23)].Conclusion:Additional Yupingfeng powder combined with routine treatment for COPD has more advantages than conventional treatment alone in improving the clinical efficacy,lung function,immune function and have less adverse events.As most of the included studies in this systematic evaluation had poor quality,the evidence to support conclusion was weak,so it was necessary to conduct more multi-center clinical trials with high quality methods and rigorous design.展开更多
Relaxed Stable Stability (RSS) in an important part of the active control technology. It is a new way to raise the flying speed, distance and maneuverability of missile. Depth study of RSS technology plays an import...Relaxed Stable Stability (RSS) in an important part of the active control technology. It is a new way to raise the flying speed, distance and maneuverability of missile. Depth study of RSS technology plays an important role for the new concept missile design. This paper describes the detailed definition of RSS and its advantages, pres- ents the research status and prospects for its application in the design of new missiles.展开更多
文摘In this paper, we propose a new input-to-state stable (ISS) synchronization method for chaotic behavior in nonlinear Bloch equations with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the ISS synchronization controller is presented to not only guarantee the asymptotic synchronization but also achieve the bounded synchronization error for any bounded disturbance. The proposed controller can be obtained by solving a convex optimization problem represented by the LMI. Simulation study is presented to demonstrate the effectiveness of the proposed synchronization scheme.
文摘This paper reports a new simple four-dimensional(4 D) hyperjerk chaotic system. The proposed system has only one stable equilibrium point. Hence, its strange attractor belongs to the category of hidden attractors. The proposed system exhibits various dynamical behaviors including chaotic, periodic, stable nature, and coexistence of various attractors. Numerous theoretical and numerical methods are used for the analyses of this system. The chaotic behavior of the new system is validated using circuit implementation. Further, the synchronization of the proposed systems is shown by designing an adaptive integrator backstepping controller. Numerical simulation validates the synchronization strategy.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275557,51422505)
文摘The current research of direct yaw moment control(DYC) system focus on the design of target yaw moment and the distribution of wheel brake force. The differential braking intervention can effectively improve the lateral stability of the vehicle, however, the effect of DYC can be improved a step further by applying the control of vehicle longitudinal velocity. In this paper, the relationship between the vehicle longitudinal velocity and lateral stability is studied, and the simulation results show that a decrease of 5 km/h of longitudinal velocity at a particular situation can bring 100° increasing of stable steering upper limit. A critical stable velocity considering the effect of steering and yaw rate measurement is defined to evaluate the risk of losing steer-ability or stability. A novel velocity pre-control method is proposed by using a hierarchical pre-control logic and is integrated with the traditional DYC system. The control algorithm is verified through a hardware in-the-loop simulation system. Double lane change(DLC) test results on both high friction coefficient(μ) and low μ roads show that by using the pre-control method, the steering effort in DLC test can be reduced by 38% and 51% and the peak value of brake pressure control can be reduced by 20% and 12% respectively on high μ and low μ roads, the lateral stability is also improved. This research proposes a novel DYC system with lighter control effort and better control effect.
基金This work was supported by the National Natural Science Foundation of China(62173215)Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04,ZR2020ZD24)the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions(2019KJI008).
文摘This paper addresses the problems of input-to-state stabilization and integral input-to-state stabilization for a class of nonlinear impulsive delayed systems subject to exogenous dis-turbances.Since the information of plant’s states,time delays,and exogenous disturbances is often hard to be obtained,the key design challenge,which we resolve,is the construction of a state observer-based controller.For this purpose,we firstly propose a corresponding observer which is independent of time delays and exogenous disturbances to reconstruct(or estimate)the plant’s states.And then based on the observations,we establish an observer-based control design for the plant to achieve the input-to-state stability(ISS)and integral-ISS(iISS)properties.With the help of the comparison principle and average impulse interval approach,some sufficient conditions are presented,and moreover,two different linear matrix inequalities(LMIs)based criteria are proposed to design the gain matrices.Finally,two numerical examples and their simulations are given to show the effectiveness of our theoretical results.
基金supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.07KJB510125,08KJD510008)the Natural Science Foundation of Yancheng Teachers University(No.07YCKL062,08YCKL053)
文摘A new design scheme of stable adaptive fuzzy control for a class of nonlinear systems is proposed in this paper.The T-S fuzzy model is employed to represent the systems.First,the concept of the so-called parallel distributed compensation (PDC) and linear matrix inequality (LMI) approach are employed to design the state feedback controller without considering the error caused by fuzzy modeling.Sufficient conditions with respect to decay rate α are derived in the sense of Lyapunov asymptotic stability.Finally,the error caused by fuzzy modeling is considered and the input-to-state stable (ISS) method is used to design the adaptive compensation term to reduce the effect of the modeling error.By the small-gain theorem,the resulting closed-loop system is proved to be input-to-state stable.Theoretical analysis verifies that the state converges to zero and all signals of the closed-loop systems are bounded.The effectiveness of the proposed controller design methodology is demonstrated through numerical simulation on the chaotic Henon system.
文摘In order to realize the dynamic stable motion control for a leg-wheeled robot, this paper presents a layered control architecture. It is composed of three levels, i.e. the supervisor level, coordinator level and leg level. The supervisor level is for the task definition and planning, while the coordinator level does the dynamic stable control and the leg level executes the real-time control command. First, we build the efficient Newton-Euler dynamics equations of the robot. Then, the stability control is realized by properly distributing ground reaction forces applied by the legs. We also use Simplex method to optimize the ground reaction force distribution and verify the control method by experimental and numerical results.
文摘The question of stable control system of bank-to-turn (BTT) missiles is a bottleneckin BTT technology. Integrate fuzzy logic stable control system of BTT missiles is designed in whichthree main problems are resolved. How to select input variables Of the fuzzy logic controller and howto guarantee completeness of the output control are two of them. The last one is how to coordinatethe fuzzy logic controllers in integrate fuzzy logic stable control system. Simulating results prov that integrate fuzzy logic stable coatrol system of BTT missiles is sueccessful, and it can be widelyused in future.
基金Supported by National Natural Science Foundation of P.R.China (60575047)
文摘The control of underactuated mechanical systems is very complex for the loss of its control inputs. The model of underactuated mechanical systems in a potential field is built with Lagrangian method and its structural properties are analyzed in detail. A stable control approach is proposed for the class of underactuated mechanical systems. This approach is applied to an underactuated double-pendulum-type overhead crane and the simulation results illustrate the correctness of dynamics analysis and validity of the proposed control algorithm.
基金Supported by the National Natural Science Foundation of China under Grant No 91441201
文摘Highly efficient and stable hybrid white organic light-emitting diodes (HWOLEDs) with a mixed bipolar interlayer between fluorescent blue and phosphorescent yellow emitting layers are demonstrated. The bipolar interlayer is a mixture of p-type diphenyl (l0-phenyl-lOH-spiro [acridine-9,9'-fluoren]-3Lyl) phosphine oxide and n-type 2',2- (1,3,5-benzinetriyl)-tris(1-phenyl-l-H-benzimidazole). The electroluminance and Commission Internationale de l'Eclairage (CIE1931) coordinates' characteristics can be modulated easily by adjusting the ratio of the hole- predominated material to the electron-predominated material in the interlayer. The hybrid WOLED with a p-type:n-type ratio of 1:3 shows a maximum current efficiency and power efficiency of 61.1 ed/A and 55.8 lm/W, respectively, with warm white CIE coordinates of (0.34, 0.43). The excellent efficiency and adaptive CIE coordi- nates are attributed to the mixed interlayer with improved charge carrier balance, optimized exciton distribution, and enhanced harvesting of singlet and triplet excitons.
基金funded by the National Natural Science Foundation of China(Grant No.12102487)Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012339)Shenzhen Science and Technology Program(Grant No.ZDSYS20210623091808026)。
文摘This study proposes a novel adaptive neural dynamic-based hybrid control strategy for stable subsatellite retrieval of two-body tethered satellite systems.The retrieval speed is given analytically,ensuring a libration-free steady state.To mitigate the potential libration motion,a general control input signal is generated by an adaptive neural-dynamic(AND)algorithm and executed by adjusting the retrieval speed and thruster on the subsatellite.To address the limited retrieval speed and improve the control performance,the thruster controller is manipulated according to a novel advanced state fuzzy control law based on higher-order libration states,whereas the remaining control input is allocated to the speed controller.The Lyapunov stability of the control strategy is demonstrated analytically.Numerical simulations validate the proposed control strategy,demonstrating well-allocated control inputs for both controllers and good control performance.
基金the National Natural Science Foundation of China (60674019).
文摘Considering the design problem of non-fragile decentralized H∞ controller with gain variations, the dynamic feedback controller by measurement feedback for uncertain linear systems is constructed and studied. The parameter uncertainties are considered to be unknown but norm bounded. The design procedures are investigated in terms of positive definite solutions to modify algebraic Riccati inequalities. Using information exchange among local controllers, the designed non-fragile decentralized H∞ controllers guarantee that the uncertain closed-loop linear systems are stable and with H∞ -norm bound on disturbance attenuation. A sufficient condition that there are such non-fragile H∞ controllers is obtained by algebraic Riccati inequalities. The approaches to solve modified algebraic Riccati inequalities are carried out preliminarily. Finally, a numerical example to show the validity of the proposed approach is given.
文摘This paper mainly introduces an output control method with high stable precision of a large power IGBT arc welding inverter. Experiments indicate that this kind of control mode can effectively improve the static and dynamic characteristics and stability of power supply system. And it can decrease the spatters in the welding process apparently. This power supply is especially suitable to automatic robot welding assembly line. It will be the developing direction of robot welding supply in the future.
文摘The Kuhn-Tucker theorem in nondifferential form is a well-known classical optimality criterion for a convex programming problems which is true for a convex problem in the case when a Kuhn-Tucker vector exists. It is natural to extract two features connected with the classical theorem. The first of them consists in its possible “impracticability” (the Kuhn-Tucker vector does not exist). The second feature is connected with possible “instability” of the classical theorem with respect to the errors in the initial data. The article deals with the so-called regularized Kuhn-Tucker theorem in nondifferential sequential form which contains its classical analogue. A proof of the regularized theorem is based on the dual regularization method. This theorem is an assertion without regularity assumptions in terms of minimizing sequences about possibility of approximation of the solution of the convex programming problem by minimizers of its regular Lagrangian, that are constructively generated by means of the dual regularization method. The major distinctive property of the regularized Kuhn-Tucker theorem consists that it is free from two lacks of its classical analogue specified above. The last circumstance opens possibilities of its application for solving various ill-posed problems of optimization, optimal control, inverse problems.
基金National Science and Technology Major Special Project and New Drug Creation Project(No.2017ZX09301003)
文摘Objective:To evaluate the efficacy of Ginseng combined with conventional therapy for stable angina pectoris(SAP).Methods:From the Cochrane Library,Pubmed,Embase,Web of Science,CNKI(China National Knowledge Infrastructure),Wanfang Datebase,VIP(Chinese Scientific Journals Database),CBM(Chinese Biomedicine Database),we reviewed the clinical randomized controlled trial(RCT),after screening and assessing the risk of bias,used RevMan 5.3 and Stata 15.0 software to make the Meta-analysis.Results:Thirteen studies were included with 1176 cases,involving 606 cases in the experimental group and 570 in the control group.The results of Meta-analysis showed that Ginseng combined with conventional therapy significantly has obvious effect on clinical effective rate(RR=1.29,95%CI[1.21,1.36],P<0.00001);ECG effective rate(RR=1.35,95%CI[1.22,1.50],P<0.00001);number of angina attacks(MD=-1.77,95%CI[-2.64,-0.91],P<0.00001);duration of angina pectoris(MD=-2.16,95%CI[-2.54,-1.78],P<0.00001);nitroglycerin dosage(MD=-1.52,95%CI[-1.81,-1.23],P<0.00001),and it is better than using conventional therapy alone.Conclusion:Ginseng combined with conventional therapy for SAP can significantly improve clinical effective rate and ECG effective rate,reduce the number of angina attacks,shorten the duration of angina pectoris,and reduce nitroglycerin dosage.The development of ginseng-related proprietary Chinese medicines has good prospects.But due to the quality of studies is medium and low,it still needs to be confirmed by conducting high-quality RCTs.
基金National Science and Technology Major Projects of Sudden Severe Acute Respiratory Infectious Diseases Treatment New Technology research and the New Scheme(No.2017 zx10204401)。
文摘Objective:To systematically evaluate the effect and safety of additional Yupingfeng powder combined with western medicine for the stable period of chronic obstructive pulmonary disease(COPD).Method:Databases including Pubmed、Web of Science、Cochrane Library、CNKI、VIP、CBM and Wanfang Data base,were searched for relevant randomized controlled trials.for Chinese and English literature about randomized controlled trials of additional Yupingfeng in the treatment of COPD on stable stage which were published from the establishment of the database to December 2019.Two researchers independently screened for,selected studies according to the inclusion and exclusion criteria and extracted data.Methodological quality was evaluated using the Cochrane Risk of Bias tool.Meta-analysis was performed using Revman 5.3 software.Results:Ninetine randomized controlled trials including 1511 patients with COPD were meta-analyzed.The total sample size was 1511.The results showed that the treatment grop with additional Yupingfeng powder could improve the clinical efficacy[OR=0.26,95%CI(0.18,0.37)],FEV1 percentage of the estimated value[MD=4.61,95%CI(2.43,6.79)],6MWD[MD=43.90,95%CI(29.48,58.32)]and patient's immunity IgA[MD=0.25,95%CI(0.17,0.34)]and can mitigate cough effectively[MD=-0.34,95%CI(-0.46,-0.23)].Conclusion:Additional Yupingfeng powder combined with routine treatment for COPD has more advantages than conventional treatment alone in improving the clinical efficacy,lung function,immune function and have less adverse events.As most of the included studies in this systematic evaluation had poor quality,the evidence to support conclusion was weak,so it was necessary to conduct more multi-center clinical trials with high quality methods and rigorous design.
文摘Relaxed Stable Stability (RSS) in an important part of the active control technology. It is a new way to raise the flying speed, distance and maneuverability of missile. Depth study of RSS technology plays an important role for the new concept missile design. This paper describes the detailed definition of RSS and its advantages, pres- ents the research status and prospects for its application in the design of new missiles.