期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Nanoindentation Mechanical Properties and Structural Biomimetic Models of Three Species of Insects Wings
1
作者 佟金 CHANG Zhiyong +5 位作者 YANG Xiao ZHANG Jin LIU Xianping CHETWYND Derek G CHEN Donghui 孙霁宇 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第4期831-839,共9页
Mimicking insect flights were used to design and develop new engineering materials. Although extensive research was done to study various aspects of flying insects. Because the detailed mechanics and underlying princi... Mimicking insect flights were used to design and develop new engineering materials. Although extensive research was done to study various aspects of flying insects. Because the detailed mechanics and underlying principles involved in insect flights remain largely unknown. A systematic study was carried on insect flights by using a combination of several advanced techniques to develop new models for the simulation and analysis of the wing membrane and veins of three types of insect wings, namely dragonfly (Pantala flavescens Fabricius), honeybee (Apis cerana cerana Fabricius) and fly (Sarcophaga carnaria Linnaeus). In order to gain insights into the flight mechanics of insects, reverse engineering methods were used to establish three-dimensional geometrical models of the membranous wings, so we can make a comparative analysis. Then nano-mechanical test of the three insect wing membranes was performed to provide experimental parameter values for mechanical models in terms of nano-hardness and elastic modulus. Finally, a computational model was established by using the finite element analysis (ANSYS) to analyze and compare the wings under a variety of simplified load regimes that are concentrated force, uniform line-load and a torque. This work opened up the possibility towards developing an engineering basis for the biomimetic design of thin solid films and 2D advanced engineering composite materials. 展开更多
关键词 biomimetics membranous wing insect wing models finite element method
下载PDF
LARGE AERODYNAMIC FORCES ON A SWEEPING WING AT LOW REYNOLDS NUMBER 被引量:6
2
作者 孙茂 吴江浩 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第1期24-31,共8页
The aerodynamic forces and flow structure of a model insect wing is studied by solving the Navier-Stokes equations numerically.After an initial start from rest,the wing is made to execute an azimuthal rotation(sweepin... The aerodynamic forces and flow structure of a model insect wing is studied by solving the Navier-Stokes equations numerically.After an initial start from rest,the wing is made to execute an azimuthal rotation(sweeping)at a large angle of attack and constant angular velocity.The Reynolds number(Re)considered in the present note is 480(Re is based on the mean chord length of the wing and the speed at 60% wing length from the wing root).During the constant-speed sweeping motion,the stall is absent and large and approximately constant lift and drag coefficients can be maintained.The mechanism for the absence of the stall or the maintenance of large aerodynamic force coefficients is as follows.Soon after the initial start,a vortex ring,which consists of the leading-edge vortex(LEV),the starting vortex,and the two wing-tip vortices,is formed in the wake of the wing.During the subsequent motion of the wing,a base-to-tip spanwise flow converts the vorticity in the LEV to the wing tip and the LEV keeps an approximately constant strength.This prevents the LEV from shedding.As a result, the size of the vortex ring increases approximately linearly with time,resulting in an approximately constant time rate of the first moment of vorticity,or approximately constant lift and drag coefficients. The variation of the relative velocity along the wing span causes a pressure gradient along the wing- span.The base-to-tip spanwise flow is mainly maintained by the pressure-gradient force. 展开更多
关键词 model insect wing sweeping motion high lift leading-edge-vortex
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部