Effects of insertion of tandem wire coil elements used as turbulator on heat transfer and turbulent flow friction characteristics in a uniform heat-flux square duct are experimentally investigated in this work. The ex...Effects of insertion of tandem wire coil elements used as turbulator on heat transfer and turbulent flow friction characteristics in a uniform heat-flux square duct are experimentally investigated in this work. The experiment is conducted for turbulent flow with the Reynolds number from 4000 to 25000. The wire coil element is inserted into the duct with a view to generating a swirl flow that assists to wash up the flow trapped in the duct corners and then increase the heat transfer rate of the test duct. Apart from the full-length coil, 1D and 2D length coil elements placed in tandem inside the duct with various free-space lengths are introduced to reduce the friction loss. The results obtained from these wire coil element inserts are also compared with those from the smooth duct. The experimental results reveal that the use of wire coil inserts for the full-length coil, 1D and 2D coil elements with a short free-space length leads to a considerable increase in heat transfer and friction loss over the smooth duct with no insert. The full-length wire coil provides higher heat transfer and friction factor than the tandem wire coil elements under the same operating conditions. Also, performance evaluation criteria to assess the real benefits in using the wire coil insert into the square duct are determined.展开更多
Heat transfer coefficient and pressure drop were measured during condensation of steamin a vertical copper tube with and without Twined Wire Coil Inserts (TWCI), respectively.The Reynolds number range of experiment wa...Heat transfer coefficient and pressure drop were measured during condensation of steamin a vertical copper tube with and without Twined Wire Coil Inserts (TWCI), respectively.The Reynolds number range of experiment was 50~2100. Experiment results showed thatTWCI can evidently augment the heat transfer performance of steam condensation in tubewith less pressure drop increase.展开更多
文摘Effects of insertion of tandem wire coil elements used as turbulator on heat transfer and turbulent flow friction characteristics in a uniform heat-flux square duct are experimentally investigated in this work. The experiment is conducted for turbulent flow with the Reynolds number from 4000 to 25000. The wire coil element is inserted into the duct with a view to generating a swirl flow that assists to wash up the flow trapped in the duct corners and then increase the heat transfer rate of the test duct. Apart from the full-length coil, 1D and 2D length coil elements placed in tandem inside the duct with various free-space lengths are introduced to reduce the friction loss. The results obtained from these wire coil element inserts are also compared with those from the smooth duct. The experimental results reveal that the use of wire coil inserts for the full-length coil, 1D and 2D coil elements with a short free-space length leads to a considerable increase in heat transfer and friction loss over the smooth duct with no insert. The full-length wire coil provides higher heat transfer and friction factor than the tandem wire coil elements under the same operating conditions. Also, performance evaluation criteria to assess the real benefits in using the wire coil insert into the square duct are determined.
文摘Heat transfer coefficient and pressure drop were measured during condensation of steamin a vertical copper tube with and without Twined Wire Coil Inserts (TWCI), respectively.The Reynolds number range of experiment was 50~2100. Experiment results showed thatTWCI can evidently augment the heat transfer performance of steam condensation in tubewith less pressure drop increase.