Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect ...Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect othermaterials from factors including acid and alkali,water vapor,bacteria.Therefore,it is necessary to summarize theresearch progress of polymer materials in the field of pollution and corrosion prevention in recent years.This articlesummarizes four types of polymer materials with good weather resistance:polyurethane(PU),polydimethylsiloxane(PDMS),polyvinylidene fluoride(PVDF),and polyvinylidene chloride(PVDC).These four polymer materials aresuitable for making polymer anti-corrosion or anti-fouling materials and each has its own characteristics.PU can firmlyadhere to various substrates,effectively protecting and extending their lifespan,but the environmentally friendly varietiescurrently used,namely water-borne polyurethanes(WPU),generally have poor mechanical properties.PDMS is nontoxicand has excellent hydrophobicity,but its static anti-fouling ability is insufficient when applied in the field of antifouling.PVDF has good chemical resistance and high mechanical properties,good UV resistance making it suitable foroutdoor use like in the marine environment.However,PVDF lacks flexibility after molding and its manufacturing cost isrelatively high.PVDC has excellent water vapor barrier properties,but poor adhesion to metal material surfaces.Therefore,researchers need to modify these four polymers when using them to solve the problem of corrosion orbiofouling.The article will review the research progress of four types of polymers in recent years from the perspectivesof anti-corrosion,anti-fouling,and a strategy named as self-healing that is beneficial for protecting polymer surfacesfrom mechanical damage,and summarize the modification methods adopted by researchers when applying thesematerials.Finally,a summary of the application and the prospects of these polymer materials are presented.展开更多
Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine ...Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine anti-corrosion and anti-fouling properties in a single coating.In this work,we combine reduced graphene oxide(rGO)/silver nanoparticles(AgNPs)with a hydrophilic polymer in a bio-based silicone-epoxy resin to create a coating with both anti-fouling and anti-corrosion properties.The excel-lent anti-fouling performance of the coating results from a ternary synergistic mechanism involving foul-ing release,contact inhibition,and a hydration effect,while the outstanding anti-corrosion performance is provided by a ternary synergistic anti-corrosion mechanism that includes a dense interpenetrating net-work(IPN)structure,a barrier effect,and passivation.The results show that the obtained coating pos-sesses superior anti-fouling activity against protein,bacteria,algae,and other marine organisms,as well as excellent anti-corrosion and certain self-healing properties due to its dynamic cross-linked net-work of rGO/AgNPs and the hydrophilic polymer.This work provides an anti-corrosion and anti-fouling integrated coating for marine industrial equipment.展开更多
This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon redu...This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.展开更多
Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)...Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)O_(3) as a robust barrier to FeSiAl core is introduced to mitigate corrosion resistance.The FeSiAl@ZnO@Al_(2)O_(3) layer by layer hybrid structure is realized with atomic-scale precision through the atomic layer deposition technique.Owing to the unique hybrid structure,the FeSiAl@ZnO@Al_(2)O_(3) exhibits record-high micro-wave absorbing performance in low-frequency bands covering L and S bands with a minimum reflection loss(RLmin)of-50.6 dB at 3.4 GHz.Compared with pure FeSiAl(RLmin of-13.5 dB,a bandwidth of 0.5 GHz),the RLmin value and effective bandwidth of this designed novel absorber increased up to~3.7 and~3 times,respectively.Fur-thermore,the inert ceramic dual-shells have improved 9.0 times the anti-corrosion property of FeSiAl core by multistage barriers towards corrosive medium and obstruction of the electric circuit.This is attributed to the large charge transfer resistance,increased impedance modulus|Z|0.01 Hz,and frequency time constant of FeSiAl@ZnO@Al_(2)O_(3).The research demonstrates a promising platform toward the design of next-generation MAs with improved anti-corrosion properties.展开更多
In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied. The influence of content...In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied. The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings. Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface. There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase. And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.展开更多
Improvements of wear and corrosion properties are essential characteristic in engineering application. A study was made on the structure, electro-oxidation and properties of fabricated Zn-Al-SnO 2-Ti O2(Zn-Al-Sn-Ti)...Improvements of wear and corrosion properties are essential characteristic in engineering application. A study was made on the structure, electro-oxidation and properties of fabricated Zn-Al-SnO 2-Ti O2(Zn-Al-Sn-Ti) thin films using electrodeposition technique from chloride bath. The microstructural studies were performed by scanning electron microscopy with attached energy dispersive spectrometer(SEM-EDS), optical microscopy(OPM) and X-ray diffractogram(XRD). The electrochemical oxidation and erosion behavior in 3.65% Na Cl medium were studied by potentiodynamic polarization technique and characterized by atomic force microscopy(AFM). The hardness and wear behavior of the electrodeposited film were performed by high diamond dura scan microhardness tester and CERT UMT-2 reciprocating sliding machine. It was found that a successful co-deposition of composite and particle were attained. Homogeneous imbedded grain structure distribution and fine refinement of crystal with improved micromechanical behavior was achieved. The corrosion resistance, hardness and wear stability resistance of the fabricated quaternary films improved significantly in all varied process parameter.展开更多
Novel hybrid coatings on pure magnesium were prepared by combining plasma electrolytic carburizing(PEC)with micro-arc oxidation(MAO)to further enhance the anti-corrosion property in this paper.Scanning electron micros...Novel hybrid coatings on pure magnesium were prepared by combining plasma electrolytic carburizing(PEC)with micro-arc oxidation(MAO)to further enhance the anti-corrosion property in this paper.Scanning electron microscopy(SEM)was used to observe the microstructure of the coatings,meanwhile,energy dispersive spectrometry(EDS)and X-ray diffraction(XRD)were separately used to investigate the elemental as well as phase compositions of the coatings.The anti-corrosion property of the coatings was evaluated by potentiodynamic polarization curves as well as electrochemical impedance spectroscopy(EIS).The results show that PEC process is closely related with the effects of adsorption as well as diffusion of the activated carbon atoms,and it can provide a favorable pretreatment surface with predesigned chemical composition to obtain a new kind of phase,namely Si C with superior corrosion resistance and chemical stability,in the following PEC+MAO hybrid coatings.Meanwhile,PEC preprocessing also can afford an excellent micro-structure to increase the coating thickness as well as to improve the compactness of the PEC+MAO hybrid coatings.During the fabrication process of the PEC+MAO hybrid coatings,an overlapping phenomenon in regard to coating thickness can be observed instead of heaping up layer by layer.Compared with both single PEC surface modification layers as well as single MAO coatings,the PEC+MAO hybrid coatings exhibit more superior anti-corrosion property.Especially,the EIS data reveal that the PEC+MAO hybrid coatings can act as an effective protection system to provide relatively excellent long-range anti-corrosion protection.Note also that employing same MAO technique for both single MAO treatment as well as PEC+MAO combining procedure is the key to this research.展开更多
In the study organic-inorganic hybrid composite, epoxy modified silicone coating and vinyl ester flake mastic were comparatively used as several anti-corrosion materials that provided protection for flue gas desulfu-r...In the study organic-inorganic hybrid composite, epoxy modified silicone coating and vinyl ester flake mastic were comparatively used as several anti-corrosion materials that provided protection for flue gas desulfu-rization (FGD). The relationship between curing conversion rate of hybrid polymer and temperature was investigated by differential scanning calorimeter (DSC). The adhesion strength, coefficient of thermal expansion and flame retardant properties of three anti-corrosion materials were measured and analyzed. A corrosion test in 8% H2SO4 and 5% HCl at temperature cycle of 40°C~ 160°C was applied to study corrosion resistance of several anti-corrosion materials. Gravimetric measurement and morphological observation of three materials before and after corrosion test were comparatively analyzed in the paper. The small weight change and good morphological structure of hybrid composite during corrosion test demonstrate that hybrid composite has better anti-corrosion properties than epoxy modified silicone coating and vinyl ester flake mastic.展开更多
In this work, graphene-modified epoxy-based anti-corrosion coatings were prepared and the influence of graphene on the anti-corrosion performance of the epoxy-based coatings was investigated with water contact angle t...In this work, graphene-modified epoxy-based anti-corrosion coatings were prepared and the influence of graphene on the anti-corrosion performance of the epoxy-based coatings was investigated with water contact angle test ,chemical solution immersion test, and electrochemical test. The water contact angle and chemical solution resistance of the epoxy-based coatings were improved with an increase in graphene content from 0 to 0.4%. These results prove that addition of graphene can significantly improve the hydrophobicity and impermeability of epoxy- based coatings. However, when the graphene content was increased to 0.5%, the performance of the epoxy-based coatings decreased because of graphene aggregation. Tafel polarization results show that graphene addition can significantly reduce the corrosion current density and corrosion potential of epoxy-based coatings, which enhance their anti-corrosion performance.展开更多
For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatme...For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.展开更多
Methods for evaluating the resistance to cathodic disbondment (RCD) of anti-corrosion coatings on buried pipelines were reviewed. It is obvious that these traditional cathodic disbondment tests (CDT) have some dis...Methods for evaluating the resistance to cathodic disbondment (RCD) of anti-corrosion coatings on buried pipelines were reviewed. It is obvious that these traditional cathodic disbondment tests (CDT) have some disadvantages and the evaluated results are only simple figures and always rely on the subjective experience of the operator. A new electrochemical method for evaluating the RCD of coatings, that is, the potentiostatic evaluation method (PEM), was developed and studied. During potentiostatic anodic polarization testing, the changes of stable polarization current of specimens before and after cathodic disbonding (CD) were measured, and the degree of cathodic disbondment of the coating was quantitatively evaluated, among which the equivalent cathodic disbonded distance AD was suggested as a parameter for evaluating the RCD. A series of testing parameters of the PEM were determined in these experiments.展开更多
The effect of cerium dioxide(CeO_2)as an additive on the structure and properties of a melting type coating has been studied by means of microhardness measurement,scanning electron microscopy and thermal analysis. The...The effect of cerium dioxide(CeO_2)as an additive on the structure and properties of a melting type coating has been studied by means of microhardness measurement,scanning electron microscopy and thermal analysis. The results show that cerium dioxide can modify the microstructure and tribological properties of the coating. Model LIC-23 composite coating which contains CeO_2 performs well as a self-lubricating coating in hydrochloric acid solution.展开更多
As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pol...As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pollution,high energy-consumption,high-cost and other undesirable issues.Besides,the durability of superhydrophobic coating also plagues its commercial application.In this paper,we introduced a facile and environment-friendly technique for fabricating abrasion-resistant superhydrophobic surfaces using thermoplastic polyurethane(TPU)and modified SiO_(2)particles(SH-SiO_(2)).Both materials are non-toxicity,low-cost,and commercial available.Our methodology has the following advantages:use of minimal amounts of formulation,take the most streamlined technical route,and no waste material.These advantages make it attractive for industrial applications,and its usage sustainability can be promised.In this study,the mechanical stability of the superhydrophobic surface was evaluated by linear wear test.It is found that the excellent wear resistance of the superhydrophobic coating benefits from the characteristics of raw materials,the preparation strategy,and the special structure.In anti-icing properties test,the TPU/SH-SiO_(2)coating exhibits the repellency to the cold droplets and the ability to extend the freezing time.The electrochemical corrosion measurement shows that the asprepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Q235 substrates.These results indicate that the TPU/SH-SiO_(2)coating possesses good abrasion resistance and has great potential in anti-corrosion and anti-icing applications.展开更多
A novel enviromental protective water based metallic coating were prepared on the surface of AZ91D magnesium alloy. The properties and structure of the coating were investigated by adhension test, hardness test, heat ...A novel enviromental protective water based metallic coating were prepared on the surface of AZ91D magnesium alloy. The properties and structure of the coating were investigated by adhension test, hardness test, heat resisting test, neutral salt spray test and scanning electron microscopy (SEM). The results show that the coating has a stepped structure which can achieve good adhesion of first-grade, heat resistance temperature of 400℃, hardness of HV_ 0.50/30210 and anti-corrosion time of 250h in salt spray test. Meanwhile, the film forming and corrosion mechanism of the coating were also put forward based on the results of the Fourier transform infrared spectroscopy (FTIR) test and electrochemical impedance spectroscopy (EIS) test.展开更多
A TiO_(2)@o-vanillin@TEOS-APTES nanocontainer was prepared by an experimental process in which,firstly,2-hydroxy-3-methoxybenzaldehyde(o-vanillin)was loaded in a TiO_(2) container to obtain TiO_(2)@o-vanillin.Then,TiO...A TiO_(2)@o-vanillin@TEOS-APTES nanocontainer was prepared by an experimental process in which,firstly,2-hydroxy-3-methoxybenzaldehyde(o-vanillin)was loaded in a TiO_(2) container to obtain TiO_(2)@o-vanillin.Then,TiO_(2)@o-vanillin was encapsulated by tetraethyl orthosilicate(TEOS).Finally,3-aminopropyl triethoxysilane(APTES)was used to modify the obtained sample.The morphology,structural phase and thermal stability of the TiO_(2)@o-vanillin@TEOS-APTES nanocontainer were analyzed using scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),Fourier transform infrared spectroscopy(FTIR),X-ray diffractometry(XRD)and thermal gravimetric analysis(TG).The release rate of o-vanillin was investigated using an ultraviolet-visible(UV-vis)spectrometer.The anti-corrosion performances of the epoxy,epoxy@o-vanillin and epoxy@TiO_(2)@o-vanillin@TEOS-APTES coatings on steel sheets were evaluated using an electrochemical method and scarification experiments.The results showed that the impedance value of the epoxy@TiO_(2)@o-vanillin@TEOS-APTES coating was two orders of magnitude higher than that of the blank epoxy coating,and one order of magnitude higher than that of the epoxy@o-vanillin coating.The maximum inhibition rate of the epoxy@TiO_(2)@o-vanillin@TEOS-APTES coating on the steel can reach 97.3%.The scarification experiments confirmed that the epoxy@TiO_(2)@o-vanillin@TEOS-APTES coating had the best anti-corrosion performance.展开更多
Through the introduction of the anti-corrosion test schemes, the test equipments and the test procedure for three kinds of basal slop protection materials including fence, mixed stump and geo-textile, this paper comes...Through the introduction of the anti-corrosion test schemes, the test equipments and the test procedure for three kinds of basal slop protection materials including fence, mixed stump and geo-textile, this paper comes to a conclusion about the analysis of the anti-corrosion test, revealing that among all of the common basal slop protection materials, mixed stump and fence are with Class II anti-corrosion property, while the geo-textile is with the first-class anti-corrosion property.展开更多
Plasma electrolytic oxidation(PEO)is a promising surface treatment to generate adherent and thick anti-corrosive coating on light-weight metals(Al,Mg,Ti,etc.)using an eco-friendly alkaline electrolyte.High energy plas...Plasma electrolytic oxidation(PEO)is a promising surface treatment to generate adherent and thick anti-corrosive coating on light-weight metals(Al,Mg,Ti,etc.)using an eco-friendly alkaline electrolyte.High energy plasma,however,inevitably generates porous structures that limit their practical performance.The present study proposes a straight-forward simple method by utilizing sub-zero electrolyte(268 K)to alter the plasma characteristics during formation of the protective coating on AZ31 Mg alloy via PEO with a comparison to the electrolyte at room temperature(298 K).In refrigerated electrolyte,the formation of micro-defects is suppressed relatively at the expense of low coating growth,which is measured to be twice lower than that at 298 K due to the temperature-dependent soft plasma discharges contributing to the development of the present coating.As a consequence,corrosion resistance of the sample processed at 268 K is superior to that of 298K,implying that the effect of coating thickness is less dominant than that of compactness.This phenomenon is interpreted in relation to the ionic movement and oxide solidification controlled by soft plasma discharges arising from the temperature gradient between electrolyte and surface of the substrate during PEO.展开更多
Fluororesin-based anti-corrosive coatings including graded FEP/PPS were prepared on carbon steel by melt powder coating, the bonding strength of all coating systems was determined by the pull-off test. It is found tha...Fluororesin-based anti-corrosive coatings including graded FEP/PPS were prepared on carbon steel by melt powder coating, the bonding strength of all coating systems was determined by the pull-off test. It is found that the poor adhesion of fluororesin coatings to metallic substrates is improved obviously by the graded coating structure of FEP/PPS, and the bonding strength reaches up to 11.8 MPa for the five-layer system. Examination by electron probe microanalysis (EPMA) verifies that the distribution of main components is graded in the five-layer system, which is responsible for the enhancement of the interfacial bonding.展开更多
The development of superhydrophobic materials has demonstrated significant potential in the realm ofcorrosion protection for aluminum alloy(Al alloy)surfaces.However,the limited mechanical stability ofsuperhydrophobic...The development of superhydrophobic materials has demonstrated significant potential in the realm ofcorrosion protection for aluminum alloy(Al alloy)surfaces.However,the limited mechanical stability ofsuperhydrophobic surfaces has impeded the rapid advancement in this field.In this research,we synthesized analuminum phosphate(AP)inorganic binder and combined it with hydrophobic fumed SiO_(2)(HF-SiO_(2))nanoparticles andpolydimethylsiloxane(PDMS)to develop a HF-SiO_(2)@PDMS@AP superhydrophobic composite coating with improvedmechanical stability on Al alloy substrates using a simple spray-coating technique.The findings indicate that the additionof the AP inorganic binder significantly enhanced the coating’s resistance to abrasion,maintaining its superhydrophobicproperties and micro-nano hierarchical structure even after being subjected to a sandpaper abrasion distance of 2000 cm.Electrochemical impedance spectroscopy(EIS)testing showed that the low-frequency modulus(|Z|0.01Hz)of theHF-SiO_(2)@PDMS@AP superhydrophobic coating increased by four orders of magnitude compared to the initial Al alloysubstrate,resulting in a substantial improvement in corrosion protection capacity.The impressive corrosion resistanceand mechanical stability exhibited by this coating have the potential to greatly expand the practical applications of suchmaterials for surface functional protection in marine and industrial environments.展开更多
In an era where the concept of green development is deeply rooted, magnesium(Mg) alloy as a light metal has a long-term development prospect in the process of energy saving, emission reduction and environmental improv...In an era where the concept of green development is deeply rooted, magnesium(Mg) alloy as a light metal has a long-term development prospect in the process of energy saving, emission reduction and environmental improvement. However, anti-corrosion performance of Mg alloy is poor due to the high chemical activity and low equilibrium potential, which limits the development of Mg alloy products.Herein, three-dimensional mesopore hollow polypyrrole spheres(MHPS) were prepared, and the MHPS was inserted into the middle of the stacked hexagon boron nitride(h-BN) lamellae, which allowed the hBN to be separated forming a further composite with abundant pore structure. Subsequently, the MHPS/hBN-OH composite was uniformly sprayed on the Mg alloy surface via simple spraying method to form the superhydrophobic surface(SHS). Finally, the slippery liquid infused porous surface(SLIPS) was successfully fabricated by applying drops of silicone lubricant on the superhydrophobic coating surface. After a series of characterization and testing, the results showed that the stacking of h-BN lamellae was significantly reduced after h-BN was successfully embedded by MHPS. In addition, the fabricated SLIPS have excellent self-cleaning, mechanical stability, anti-icing and anti-corrosion properties. Therefore, the method of embedding polymer microspheres not only offers a new strategy for h-BN exfoliation, but also the successful prepared SLIPS largely retards the corrosion of Mg alloy while providing new ideas for the development of SLIPS.展开更多
基金Project(ZR2022QD001)supported by the Shandong Provincial Natural Science Youth Fund Project,ChinaProject(42306228)supported by the National Natural Science Foundation of ChinaProject(2022CXPT027)supported by the Key R&D Program of Shandong Province,China。
文摘Corrosion has always been a difficult problem that troubles and restricts the application and development ofengineering materials.By endowing coatings on metal surfaces with polymer material,it is possible to protect othermaterials from factors including acid and alkali,water vapor,bacteria.Therefore,it is necessary to summarize theresearch progress of polymer materials in the field of pollution and corrosion prevention in recent years.This articlesummarizes four types of polymer materials with good weather resistance:polyurethane(PU),polydimethylsiloxane(PDMS),polyvinylidene fluoride(PVDF),and polyvinylidene chloride(PVDC).These four polymer materials aresuitable for making polymer anti-corrosion or anti-fouling materials and each has its own characteristics.PU can firmlyadhere to various substrates,effectively protecting and extending their lifespan,but the environmentally friendly varietiescurrently used,namely water-borne polyurethanes(WPU),generally have poor mechanical properties.PDMS is nontoxicand has excellent hydrophobicity,but its static anti-fouling ability is insufficient when applied in the field of antifouling.PVDF has good chemical resistance and high mechanical properties,good UV resistance making it suitable foroutdoor use like in the marine environment.However,PVDF lacks flexibility after molding and its manufacturing cost isrelatively high.PVDC has excellent water vapor barrier properties,but poor adhesion to metal material surfaces.Therefore,researchers need to modify these four polymers when using them to solve the problem of corrosion orbiofouling.The article will review the research progress of four types of polymers in recent years from the perspectivesof anti-corrosion,anti-fouling,and a strategy named as self-healing that is beneficial for protecting polymer surfacesfrom mechanical damage,and summarize the modification methods adopted by researchers when applying thesematerials.Finally,a summary of the application and the prospects of these polymer materials are presented.
基金supported by the Major Project of Ningbo Science and Technology Innovation 2025(2021Z092)the Defense Industrial Technology Development Program(JCKY2021513B001).
文摘Marine corrosion and biofouling are challenges that affect marine industrial equipment,and protecting equipment with functional coatings is a simple and effective approach.However,it is extremely difficult to combine anti-corrosion and anti-fouling properties in a single coating.In this work,we combine reduced graphene oxide(rGO)/silver nanoparticles(AgNPs)with a hydrophilic polymer in a bio-based silicone-epoxy resin to create a coating with both anti-fouling and anti-corrosion properties.The excel-lent anti-fouling performance of the coating results from a ternary synergistic mechanism involving foul-ing release,contact inhibition,and a hydration effect,while the outstanding anti-corrosion performance is provided by a ternary synergistic anti-corrosion mechanism that includes a dense interpenetrating net-work(IPN)structure,a barrier effect,and passivation.The results show that the obtained coating pos-sesses superior anti-fouling activity against protein,bacteria,algae,and other marine organisms,as well as excellent anti-corrosion and certain self-healing properties due to its dynamic cross-linked net-work of rGO/AgNPs and the hydrophilic polymer.This work provides an anti-corrosion and anti-fouling integrated coating for marine industrial equipment.
文摘This study explores the corrosion issues arising from the coupled combustion of coal and biomass and proposes potential solutions.Biomass,as a renewable energy source,offers advantages in energy-saving and carbon reduction.However,the corrosive effects of alkali metal compounds,sulfur(S)and chlorine(Cl)elements in the ash after combustion cannot be underestimated due to the high volatile content of biomass fuels.We investigate the corrosion mechanisms,as well as the transfer of Cl and alkali metal elements during this process.Comparative corrosion analyses are conducted among coal-fired boilers,pure biomass boilers and boilers with coupled combustion.Various biomass types in co-firing are studied to understand different corrosion outcomes.The main factors influencing corrosion include the physicochemical properties of biomass feedstock,furnace temperature and heating surface materials,with the chemical composition and ash content of biomass playing a dominant role.Currently,the methods used for anti-corrosion include water washing pretreatment of biomass feedstock,application of novel alloys and coatings and the development of additives to inhibit fouling,ash deposition and corrosion.Efficient inhibitors are economical and easy to produce.Additionally,biomass can be converted into biomass gasification gas,although challenges related to tar still need to be addressed.
基金financially supported by the National Natural Science Foundation of China(No.51972045,5197021414)the Fundamental Research Funds for the Chinese Central Universities,China(No.ZYGX2019J025)+4 种基金Sichuan Science and Technology Program(No.2020JDRC0015 and No.2020JDRC0045)Sichuan Science and Technology Innovation Talent Project(No.2021JDRC0021)the Vice-Chancellor fellowship scheme at RMIT Universitythe RMIT Micro Nano Research Facility(MNRF)in the Victorian node of the Australian National Fabrication Facility(ANFF)the RMIT Microscopy and Microanalysis Facility(RMMF)to support this work。
文摘Developing highly efficient magnetic microwave absorb-ers(MAs)is crucial,and yet challenging for anti-corrosion properties in extremely humid and salt-induced foggy environments.Herein,a dual-oxide shell of ZnO/Al_(2)O_(3) as a robust barrier to FeSiAl core is introduced to mitigate corrosion resistance.The FeSiAl@ZnO@Al_(2)O_(3) layer by layer hybrid structure is realized with atomic-scale precision through the atomic layer deposition technique.Owing to the unique hybrid structure,the FeSiAl@ZnO@Al_(2)O_(3) exhibits record-high micro-wave absorbing performance in low-frequency bands covering L and S bands with a minimum reflection loss(RLmin)of-50.6 dB at 3.4 GHz.Compared with pure FeSiAl(RLmin of-13.5 dB,a bandwidth of 0.5 GHz),the RLmin value and effective bandwidth of this designed novel absorber increased up to~3.7 and~3 times,respectively.Fur-thermore,the inert ceramic dual-shells have improved 9.0 times the anti-corrosion property of FeSiAl core by multistage barriers towards corrosive medium and obstruction of the electric circuit.This is attributed to the large charge transfer resistance,increased impedance modulus|Z|0.01 Hz,and frequency time constant of FeSiAl@ZnO@Al_(2)O_(3).The research demonstrates a promising platform toward the design of next-generation MAs with improved anti-corrosion properties.
基金This work was financially supported bythe Doctoral Foundation ofYanshan University(B41)theScience and Technology Foundation ofYanshan University(YDJJ0169).
文摘In order to prepare ornamental and anti-corrosive coating on aluminum alloys, preparation technology of black micro-arc ceramic coatings on Al alloys in silicate based electrolyte was studied. The influence of content of Na2WO4 and combination additive in solution on the performance of black ceramic coatings was studied; the anticorrosion performances of black ceramic coatings were evaluated through whole-immersion test and electrochemical method in 3.5% NaCl solution at different pH value; SEM and XRD were used to analyze the surface morphology and phase constitutes of the black ceramic coatings. Experimental results indicated that, without combination additives, with the increasing of Na2WO4 content in the electrolyte, ceramic coating became darker and thicker, but the color was not black; after adding combination additive, the coating turned to be black; the black ceramic coating was multi-hole form in surface. There was a small quantity of tungsten existing in the black ceramic coating beside α-Al2O3 phase and β-Al2O3 phase. And aluminum alloy with black ceramic coating exhibited excellent anti-corrosion property in acid, basic and neutral 3.5% NaCl solution.
基金supported financially by the National Research Foundationsupported by Surface Engineering Research Centre (SERC),Tshwane University of Technology
文摘Improvements of wear and corrosion properties are essential characteristic in engineering application. A study was made on the structure, electro-oxidation and properties of fabricated Zn-Al-SnO 2-Ti O2(Zn-Al-Sn-Ti) thin films using electrodeposition technique from chloride bath. The microstructural studies were performed by scanning electron microscopy with attached energy dispersive spectrometer(SEM-EDS), optical microscopy(OPM) and X-ray diffractogram(XRD). The electrochemical oxidation and erosion behavior in 3.65% Na Cl medium were studied by potentiodynamic polarization technique and characterized by atomic force microscopy(AFM). The hardness and wear behavior of the electrodeposited film were performed by high diamond dura scan microhardness tester and CERT UMT-2 reciprocating sliding machine. It was found that a successful co-deposition of composite and particle were attained. Homogeneous imbedded grain structure distribution and fine refinement of crystal with improved micromechanical behavior was achieved. The corrosion resistance, hardness and wear stability resistance of the fabricated quaternary films improved significantly in all varied process parameter.
基金financially supported by the Creative Research Group Fund Grant of Gansu Province,China(1111RJDA011)。
文摘Novel hybrid coatings on pure magnesium were prepared by combining plasma electrolytic carburizing(PEC)with micro-arc oxidation(MAO)to further enhance the anti-corrosion property in this paper.Scanning electron microscopy(SEM)was used to observe the microstructure of the coatings,meanwhile,energy dispersive spectrometry(EDS)and X-ray diffraction(XRD)were separately used to investigate the elemental as well as phase compositions of the coatings.The anti-corrosion property of the coatings was evaluated by potentiodynamic polarization curves as well as electrochemical impedance spectroscopy(EIS).The results show that PEC process is closely related with the effects of adsorption as well as diffusion of the activated carbon atoms,and it can provide a favorable pretreatment surface with predesigned chemical composition to obtain a new kind of phase,namely Si C with superior corrosion resistance and chemical stability,in the following PEC+MAO hybrid coatings.Meanwhile,PEC preprocessing also can afford an excellent micro-structure to increase the coating thickness as well as to improve the compactness of the PEC+MAO hybrid coatings.During the fabrication process of the PEC+MAO hybrid coatings,an overlapping phenomenon in regard to coating thickness can be observed instead of heaping up layer by layer.Compared with both single PEC surface modification layers as well as single MAO coatings,the PEC+MAO hybrid coatings exhibit more superior anti-corrosion property.Especially,the EIS data reveal that the PEC+MAO hybrid coatings can act as an effective protection system to provide relatively excellent long-range anti-corrosion protection.Note also that employing same MAO technique for both single MAO treatment as well as PEC+MAO combining procedure is the key to this research.
文摘In the study organic-inorganic hybrid composite, epoxy modified silicone coating and vinyl ester flake mastic were comparatively used as several anti-corrosion materials that provided protection for flue gas desulfu-rization (FGD). The relationship between curing conversion rate of hybrid polymer and temperature was investigated by differential scanning calorimeter (DSC). The adhesion strength, coefficient of thermal expansion and flame retardant properties of three anti-corrosion materials were measured and analyzed. A corrosion test in 8% H2SO4 and 5% HCl at temperature cycle of 40°C~ 160°C was applied to study corrosion resistance of several anti-corrosion materials. Gravimetric measurement and morphological observation of three materials before and after corrosion test were comparatively analyzed in the paper. The small weight change and good morphological structure of hybrid composite during corrosion test demonstrate that hybrid composite has better anti-corrosion properties than epoxy modified silicone coating and vinyl ester flake mastic.
文摘In this work, graphene-modified epoxy-based anti-corrosion coatings were prepared and the influence of graphene on the anti-corrosion performance of the epoxy-based coatings was investigated with water contact angle test ,chemical solution immersion test, and electrochemical test. The water contact angle and chemical solution resistance of the epoxy-based coatings were improved with an increase in graphene content from 0 to 0.4%. These results prove that addition of graphene can significantly improve the hydrophobicity and impermeability of epoxy- based coatings. However, when the graphene content was increased to 0.5%, the performance of the epoxy-based coatings decreased because of graphene aggregation. Tafel polarization results show that graphene addition can significantly reduce the corrosion current density and corrosion potential of epoxy-based coatings, which enhance their anti-corrosion performance.
基金financialy supported by the National Key R&D Program of China(Grant No.2018YFB0905400)the National Natural Science Foundation of China(Grant Nos.22075331,51702376)+2 种基金the Fundamental Research Funds for the Central Universities(19lgzd02)the Guangdong Pearl River Talents Plan(2019QN01L117)the National Thousand Youth Talents Project of the Chinese Government
文摘For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.
基金This work is financially supported by the National Natural Science Foundation of China (No.2992021).
文摘Methods for evaluating the resistance to cathodic disbondment (RCD) of anti-corrosion coatings on buried pipelines were reviewed. It is obvious that these traditional cathodic disbondment tests (CDT) have some disadvantages and the evaluated results are only simple figures and always rely on the subjective experience of the operator. A new electrochemical method for evaluating the RCD of coatings, that is, the potentiostatic evaluation method (PEM), was developed and studied. During potentiostatic anodic polarization testing, the changes of stable polarization current of specimens before and after cathodic disbonding (CD) were measured, and the degree of cathodic disbondment of the coating was quantitatively evaluated, among which the equivalent cathodic disbonded distance AD was suggested as a parameter for evaluating the RCD. A series of testing parameters of the PEM were determined in these experiments.
基金This is supported by the Youth Research Fund of Chinese Academy of Sciences
文摘The effect of cerium dioxide(CeO_2)as an additive on the structure and properties of a melting type coating has been studied by means of microhardness measurement,scanning electron microscopy and thermal analysis. The results show that cerium dioxide can modify the microstructure and tribological properties of the coating. Model LIC-23 composite coating which contains CeO_2 performs well as a self-lubricating coating in hydrochloric acid solution.
基金Financial support from the National Natural Science Foundation of China(No.21676216)Special project of Shaanxi Provincial Education Department,China(20JC034)+1 种基金Basic research program of Natural Science in Shaanxi Province,China(2019JLP-03)Innovation project of college students in Shaanxi Province,China(S202010697054)are gratefully acknowledged.
文摘As a passive anti-icing strategy,properly designed superhydrophobic coatings can demonstrate outstanding performances.However,common preparation strategies for superhydrophobic coatings often lead to environmental pollution,high energy-consumption,high-cost and other undesirable issues.Besides,the durability of superhydrophobic coating also plagues its commercial application.In this paper,we introduced a facile and environment-friendly technique for fabricating abrasion-resistant superhydrophobic surfaces using thermoplastic polyurethane(TPU)and modified SiO_(2)particles(SH-SiO_(2)).Both materials are non-toxicity,low-cost,and commercial available.Our methodology has the following advantages:use of minimal amounts of formulation,take the most streamlined technical route,and no waste material.These advantages make it attractive for industrial applications,and its usage sustainability can be promised.In this study,the mechanical stability of the superhydrophobic surface was evaluated by linear wear test.It is found that the excellent wear resistance of the superhydrophobic coating benefits from the characteristics of raw materials,the preparation strategy,and the special structure.In anti-icing properties test,the TPU/SH-SiO_(2)coating exhibits the repellency to the cold droplets and the ability to extend the freezing time.The electrochemical corrosion measurement shows that the asprepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Q235 substrates.These results indicate that the TPU/SH-SiO_(2)coating possesses good abrasion resistance and has great potential in anti-corrosion and anti-icing applications.
文摘A novel enviromental protective water based metallic coating were prepared on the surface of AZ91D magnesium alloy. The properties and structure of the coating were investigated by adhension test, hardness test, heat resisting test, neutral salt spray test and scanning electron microscopy (SEM). The results show that the coating has a stepped structure which can achieve good adhesion of first-grade, heat resistance temperature of 400℃, hardness of HV_ 0.50/30210 and anti-corrosion time of 250h in salt spray test. Meanwhile, the film forming and corrosion mechanism of the coating were also put forward based on the results of the Fourier transform infrared spectroscopy (FTIR) test and electrochemical impedance spectroscopy (EIS) test.
基金supported by the National Natural Science Foundation of China(21878024)the Innovation Team Project of Colleges and Universities in Liaoning Province(2018479-14,LT2015001).
文摘A TiO_(2)@o-vanillin@TEOS-APTES nanocontainer was prepared by an experimental process in which,firstly,2-hydroxy-3-methoxybenzaldehyde(o-vanillin)was loaded in a TiO_(2) container to obtain TiO_(2)@o-vanillin.Then,TiO_(2)@o-vanillin was encapsulated by tetraethyl orthosilicate(TEOS).Finally,3-aminopropyl triethoxysilane(APTES)was used to modify the obtained sample.The morphology,structural phase and thermal stability of the TiO_(2)@o-vanillin@TEOS-APTES nanocontainer were analyzed using scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),Fourier transform infrared spectroscopy(FTIR),X-ray diffractometry(XRD)and thermal gravimetric analysis(TG).The release rate of o-vanillin was investigated using an ultraviolet-visible(UV-vis)spectrometer.The anti-corrosion performances of the epoxy,epoxy@o-vanillin and epoxy@TiO_(2)@o-vanillin@TEOS-APTES coatings on steel sheets were evaluated using an electrochemical method and scarification experiments.The results showed that the impedance value of the epoxy@TiO_(2)@o-vanillin@TEOS-APTES coating was two orders of magnitude higher than that of the blank epoxy coating,and one order of magnitude higher than that of the epoxy@o-vanillin coating.The maximum inhibition rate of the epoxy@TiO_(2)@o-vanillin@TEOS-APTES coating on the steel can reach 97.3%.The scarification experiments confirmed that the epoxy@TiO_(2)@o-vanillin@TEOS-APTES coating had the best anti-corrosion performance.
文摘Through the introduction of the anti-corrosion test schemes, the test equipments and the test procedure for three kinds of basal slop protection materials including fence, mixed stump and geo-textile, this paper comes to a conclusion about the analysis of the anti-corrosion test, revealing that among all of the common basal slop protection materials, mixed stump and fence are with Class II anti-corrosion property, while the geo-textile is with the first-class anti-corrosion property.
基金the Mid-Level Researcher National Project of the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea(NRF-2020R1A2C2004192)supported partly by the Competency Development Program for Industry Specialist of the Korea Institute for Advancement of Technology(KIAT)funded by the Ministry of Trade,Industry,and Energy,Republic of Korea(P0002019)。
文摘Plasma electrolytic oxidation(PEO)is a promising surface treatment to generate adherent and thick anti-corrosive coating on light-weight metals(Al,Mg,Ti,etc.)using an eco-friendly alkaline electrolyte.High energy plasma,however,inevitably generates porous structures that limit their practical performance.The present study proposes a straight-forward simple method by utilizing sub-zero electrolyte(268 K)to alter the plasma characteristics during formation of the protective coating on AZ31 Mg alloy via PEO with a comparison to the electrolyte at room temperature(298 K).In refrigerated electrolyte,the formation of micro-defects is suppressed relatively at the expense of low coating growth,which is measured to be twice lower than that at 298 K due to the temperature-dependent soft plasma discharges contributing to the development of the present coating.As a consequence,corrosion resistance of the sample processed at 268 K is superior to that of 298K,implying that the effect of coating thickness is less dominant than that of compactness.This phenomenon is interpreted in relation to the ionic movement and oxide solidification controlled by soft plasma discharges arising from the temperature gradient between electrolyte and surface of the substrate during PEO.
文摘Fluororesin-based anti-corrosive coatings including graded FEP/PPS were prepared on carbon steel by melt powder coating, the bonding strength of all coating systems was determined by the pull-off test. It is found that the poor adhesion of fluororesin coatings to metallic substrates is improved obviously by the graded coating structure of FEP/PPS, and the bonding strength reaches up to 11.8 MPa for the five-layer system. Examination by electron probe microanalysis (EPMA) verifies that the distribution of main components is graded in the five-layer system, which is responsible for the enhancement of the interfacial bonding.
基金Projects(ZR2022YQ35,ZR2021LFG004)supported by the Shandong Provincial Natural Science Foundation,ChinaProject(2021207)supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences。
文摘The development of superhydrophobic materials has demonstrated significant potential in the realm ofcorrosion protection for aluminum alloy(Al alloy)surfaces.However,the limited mechanical stability ofsuperhydrophobic surfaces has impeded the rapid advancement in this field.In this research,we synthesized analuminum phosphate(AP)inorganic binder and combined it with hydrophobic fumed SiO_(2)(HF-SiO_(2))nanoparticles andpolydimethylsiloxane(PDMS)to develop a HF-SiO_(2)@PDMS@AP superhydrophobic composite coating with improvedmechanical stability on Al alloy substrates using a simple spray-coating technique.The findings indicate that the additionof the AP inorganic binder significantly enhanced the coating’s resistance to abrasion,maintaining its superhydrophobicproperties and micro-nano hierarchical structure even after being subjected to a sandpaper abrasion distance of 2000 cm.Electrochemical impedance spectroscopy(EIS)testing showed that the low-frequency modulus(|Z|0.01Hz)of theHF-SiO_(2)@PDMS@AP superhydrophobic coating increased by four orders of magnitude compared to the initial Al alloysubstrate,resulting in a substantial improvement in corrosion protection capacity.The impressive corrosion resistanceand mechanical stability exhibited by this coating have the potential to greatly expand the practical applications of suchmaterials for surface functional protection in marine and industrial environments.
基金financially supported by National Natural Science Foundation of China (Nos.51872245, 52103269)the Natural Science Key Foundation of Gansu Province+4 种基金China (No.23JRRA680)the Excellent Doctoral Student Project of Natural Science Foundation of Gansu Province (No.23JRRA695)the Gansu Province University Industrial Support Plan Project (No.2023CYZC-16)the Science and Technology Development Plan Project of Lanzhou City(No.2022-2-78)the Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials and Longyuan Young Talent for financial support。
文摘In an era where the concept of green development is deeply rooted, magnesium(Mg) alloy as a light metal has a long-term development prospect in the process of energy saving, emission reduction and environmental improvement. However, anti-corrosion performance of Mg alloy is poor due to the high chemical activity and low equilibrium potential, which limits the development of Mg alloy products.Herein, three-dimensional mesopore hollow polypyrrole spheres(MHPS) were prepared, and the MHPS was inserted into the middle of the stacked hexagon boron nitride(h-BN) lamellae, which allowed the hBN to be separated forming a further composite with abundant pore structure. Subsequently, the MHPS/hBN-OH composite was uniformly sprayed on the Mg alloy surface via simple spraying method to form the superhydrophobic surface(SHS). Finally, the slippery liquid infused porous surface(SLIPS) was successfully fabricated by applying drops of silicone lubricant on the superhydrophobic coating surface. After a series of characterization and testing, the results showed that the stacking of h-BN lamellae was significantly reduced after h-BN was successfully embedded by MHPS. In addition, the fabricated SLIPS have excellent self-cleaning, mechanical stability, anti-icing and anti-corrosion properties. Therefore, the method of embedding polymer microspheres not only offers a new strategy for h-BN exfoliation, but also the successful prepared SLIPS largely retards the corrosion of Mg alloy while providing new ideas for the development of SLIPS.