Background: The LiBackpack is a recently developed backpack light detection and ranging(LiDAR) system that combines the flexibility of human walking with the nearby measurement in all directions to provide a novel and...Background: The LiBackpack is a recently developed backpack light detection and ranging(LiDAR) system that combines the flexibility of human walking with the nearby measurement in all directions to provide a novel and efficient approach to LiDAR remote sensing, especially useful for forest structure inventory. However, the measurement accuracy and error sources have not been systematically explored for this system.Method: In this study, we used the LiBackpack D-50 system to measure the diameter at breast height(DBH) for a Pinus sylvestris tree population in the Saihanba National Forest Park of China, and estimated the accuracy of LiBackpack measurements of DBH based on comparisons with manually measured DBH values in the field. We determined the optimal vertical slice thickness of the point cloud sample for achieving the most stable and accurate LiBackpack measurements of DBH for this tree species, and explored the effects of different factors on the measurement error.Result: 1) A vertical thickness of 30 cm for the point cloud sample slice provided the highest fitting accuracy(adjusted R2= 0.89, Root Mean Squared Error(RMSE) = 20.85 mm);2) the point cloud density had a significant negative, logarithmic relationship with measurement error of DBH and it explained 35.1% of the measurement error;3) the LiBackpack measurements of DBH were generally smaller than the manually measured values, and the corresponding measurement errors increased for larger trees;and 4) by considering the effect of the point cloud density correction, a transitional model can be fitted to approximate field measured DBH using LiBackpackscanned value with satisfactory accuracy(adjusted R2= 0.920;RMSE = 14.77 mm), and decrease the predicting error by 29.2%. Our study confirmed the reliability of the novel LiBackpack system in accurate forestry inventory, set up a useful transitional model between scanning data and the traditional manual-measured data specifically for P.sylvestris, and implied the applicable substitution of this new approach for more species, with necessary parameter calibration.展开更多
We evaluated heartwood, sapwood and bark content in teak trees. A total of 27 sample plots were laid out in teak plantations raised by State Forest Department in Kamataka covering different age groups (11-36 years),...We evaluated heartwood, sapwood and bark content in teak trees. A total of 27 sample plots were laid out in teak plantations raised by State Forest Department in Kamataka covering different age groups (11-36 years), density (516-2061 trees/ha) and sites. From these planta- tions, a total of 130 trees were felled for estimating the yield and bark content in relation to diameter at breast height (DBH), age and density. Bark content ranged from 22.2%-54.3%. Heartwood and sapwood con- tent were analyzed by sampling five trees each from two different planta- tions, one 30 years old at 553 trees.ha-1 and the other 32 years old at 911 trees.ha-1. The highest heartwood proportion of stem wood volume (over-bark) was 56.3% and the lowest was 37.1%.展开更多
Quadratic mean diameter is the most frequently reported descriptor of the diameter distribution of forests.As such,it is often used as an indicator of forest stand structure,developmental stage,and ecological and econ...Quadratic mean diameter is the most frequently reported descriptor of the diameter distribution of forests.As such,it is often used as an indicator of forest stand structure,developmental stage,and ecological and economic potential.However,quadratic mean diameter can be heavily influenced by the presence or absence of large numbers of small stems in lower canopy strata,and it is also sensitive to left-truncation of the diameter distribution,making its interpretation across inventories with different protocols challenging.Here,we examine three alternative expressions of stand diameter:the arithmetic and quadratic mean diameter of the thickest 100 trees per hectare,and the basal area-weighted mean diameter.Using data from the United States Forest Inventory and Analysis program for New York and New England,these alternative expressions showed closer correlation with multiple stand structural variables than did quadratic mean diameter,including merchantable cubic and board foot volume per hectare,aboveground live tree carbon per hectare,and total number of live and dead standing trees greater than 40 cm diameter at breast height per hectare(previously proposed as an index of old-growth structure).Arithmetic and quadratic mean diameter of the thickest 100 trees per hectare showed nearly identical performance,and the strongest correlations across the board.We develop closed-form expressions for these variables when the diameter distribution is a Weibull,and illustrate their behavior relative to quadratic mean diameter for that situation.While the reasons for prevalence of quadratic mean diameter as an indicator remain valid,we suggest that these alternative measures should be more widely reported and analyzed to give a more informative depiction of stand structure and development in complex forests.展开更多
Advancements in airborne LiDAR analysis technology have made it possible to quantify forest resource volumes based on individual trees, and such technology may soon replace field surveys. Unlike individual tree detect...Advancements in airborne LiDAR analysis technology have made it possible to quantify forest resource volumes based on individual trees, and such technology may soon replace field surveys. Unlike individual tree detection or tree height measurements, diameter at breast height (DBH) is difficult to determine directly from measured data and is instead estimated indirectly using the correlation between crown size and DBH. Indicators that represent crown size include crown area, surface area, length, and length ratio, and were utilized with tree height as explanatory variables in ten combinations to determine a regression formula. DBH and tree height calculated from the regression formula were applied to an equation to calculate stem volumes of individual trees. Airborne LiDAR measurements were taken using ALS50-II and ALS60 (Leica) at a density of 4 points/m2. An evaluation of the relationship between the regression formulae and DBH estimates indicated that a combination of crown area, tree height, and crown ratio for Japanese cedar, and a combination of crown area and tree height for Japanese cypress, yielded the highest coefficients of determination. The average error and RMSE were 6.9% and 2.38 cm respectively for Japanese cedar, while the corresponding values for Japanese cypress were 8.35% and 2.51 cm. Once the relationship was extended to the stem volumes of individual trees, the average error was 14.4% and RMSE was 0.10 m3 for Japanese cedar. The corresponding values for Japanese cypress were 18.9% and 0.10 m3. These results demonstrate the potential use of airborne LiDAR as a substitute for field surveys.展开更多
[Objectives]This study was conducted to provide good basic research data for Cunninghamia lanceolata plantations in southern Anhui,so as to improve local ecological,economic and social benefits.[Methods]A 22-year-old ...[Objectives]This study was conducted to provide good basic research data for Cunninghamia lanceolata plantations in southern Anhui,so as to improve local ecological,economic and social benefits.[Methods]A 22-year-old near-mature C.lanceolata plantation in Lingnan Forest Farm,Xiuning County,Huangshan City,Anhui Province was investigated and analyzed by sample plot survey.[Results]The average DBH value of the C.lanceolata plantation at the lower slope was the largest,24.7%and 19.2%higher than those at the upper and middle slopes,respectively.The average single plant wood volume at the lower slope was 47.6%and 49.1%higher than those in the upper and middle slopes,respectively.However,the average tree heights at various slope positions showed little difference.Meanwhile,all the indexes showed the phenomenon of semi-shady slope>sunny slope>shady slope under different slope directions.Among them,the effect of slope position on DBH was extremely significant,but the effect of slope direction on DBH was not significant,and slope position,slope direction and the interaction of slope direction and slope position had no significant effects on the tree height of the C.lanceolata plantation.In addition,slope direction and slope position had extremely significant effects on single plant wood volume.From the overall growth situation of the C.lanceolata plantation in Lingnan Forest Farm,the slope position factor had greater effects on various indexes of forest growth than the slope direction factor,mainly manifested in that the lower slope was better than the middle slope,and the middle slope position was better than the upper slope,while although slope direction had some effect on the growth of the C.lanceolata plantation,the influence degree was not as significant as that of slope position.[Conclusions]This study provides some reference for the adjustment and optimization,development and renewal of C.lanceolata plantation structure in the later period in this area,as well as some data support for other theoretical research on economic forests.展开更多
The tree height-diameter at breast height(H-DBH)and crown radius-DBH(CR-DBH)relationships are key for forest carbon/biomass estimation,parameterization in vegetation models and vegetation-atmosphere interactions.Altho...The tree height-diameter at breast height(H-DBH)and crown radius-DBH(CR-DBH)relationships are key for forest carbon/biomass estimation,parameterization in vegetation models and vegetation-atmosphere interactions.Although the H-DBH relationship has been widely investigated on site or regional scales,and a few of studies have involved CR-DBH relationships based on plot-level data,few studies have quantitatively verifed the universality of these two relationships on a global scale.This study evaluated the ability of 29 functions to ft the H-DBH and CR-DBH relationships for six different plant functional types(PFTs)on a global scale,based on a global plant trait database.Results showed that most functions were able to capture the H-DBH relationship for tropical PFTs and boreal needleleaf trees relatively accurately,but slightly less for temperate PFTs and boreal broadleaf trees(BB).For boreal PFTs,the S-shaped Logistic function ftted the H-DBH relationship best,while for temperate PFTs the Chapman-Richards function performed well.For tropical needleleaf trees,the fractional function of DBH satisfactorily captured the H-DBH relationship,while for tropical broadleaf trees,the Weibull function and a composite function of fractions were the best choices.For CR-DBH,the ftting capabilities of all the functions were comparable for all PFTs except BB.The Logistic function performed best for two boreal PFTs and temperate broadleaf trees,but for temperate needleleaf trees and two tropical PFTs,some exponential functions demonstrated higher skill.This work provides valuable information for parameterization improvements in vegetation models and forest feld investigations.展开更多
Since 2000, the Chinese government has implemented emergency water diversion measures to restore the damaged riparian forest ecosystem with dominant tree species Euphrat poplar(Populus euphratica Oliv.)at the lower re...Since 2000, the Chinese government has implemented emergency water diversion measures to restore the damaged riparian forest ecosystem with dominant tree species Euphrat poplar(Populus euphratica Oliv.)at the lower reaches of the Tarim River. In the present study, comparative analysis of variations in the vitality of P. euphratica trees were made using 2005 and 2010 data to illustrate the revitalization process of riparian forest. Poplar trees within 300 m of the riverbed were positively revitalized, while the vitality of trees farther than 300 m from the river decreased. Population structure was studied to demonstrate the development of poplar community. In the first belt, the class structure for the diameter at breast height(DBH) of P. euphratica fit a logistic model, and the 2nd, 3rd and 4th belt curve fittings were close to a Gaussian model; in other plots they were bimodal. Cluster analysis of the composition of the DBH class of poplar trees demonstrated that those within 16–36 cm DBH were the most abundant(58.49% of total) in study area, under 16 cm of DBH were second(31.36%), and trees >40 cm DBH were the least abundant(10.15%). More than 80% of the trees were young and medium-sized, which means that the poplar forest community in the vicinity of the lower Tarim River is at a stable developmental stage. The abundance of juvenile trees of P. euphratica in the first and second measuring belts was 12.13% in 2005 and increased to 25.52% in 2010, which means that the emergency water transfer had a positive impact on the generation of young P. euphratica trees in the vicinity of the river.展开更多
Information on changes in diameter at breast height (DBH) is important for net primary production (NPP) estimates, timing of forest inventory, and forest management. In the present study, patterns of DBH change we...Information on changes in diameter at breast height (DBH) is important for net primary production (NPP) estimates, timing of forest inventory, and forest management. In the present study, patterns of DBH change were measured under field conditions during the dry season for three dominant and native tree species in a monsoon evergreen broad-leaved forest in the Dinghushan Biosphere Reserve. For each tree species, different patterns of DBH change were observed. In the case of the fast-growing tree species Castanopsis chinensis Hance, large diurnal fluctuations occur, with a peak DBH in the early morning (around 05:00 h) that decreases to a minimum by about 14:00 h. Both Schima superba Gardn. et Chemp and Cryptocarya chinensis (Hance) Hemsh exhibited less diurnal swelling and shrinkage. Diurnal fluctuations for these species were observed on a few occasions over the period of observation. Graphical comparisons and statistical analysis of changes in DBH with meteorological variables indicate that for different trees, the different changes in DBH observed responded to different meteorological variables. Large stem changes were found to occur for Ca. chinensis trees that were associated with variations in solar radiation. However, both S. superba and Cr. chinensis were found to be less sensitive to solar radiation. Changes in the DBH of these two species were found to be controlled mainly by soil temperature and soil moisture. During the later dry season, with a lower soil temperature and soil moisture, all three tree species stopped growing and only negligible shrinkage, expansion, or fluctuation occurred, suggesting that the optimum time to measure tree growth in the Dinghushan Biosphere Reserve is the later dry season.展开更多
The development of equations to predict tree height, crown diameter, crown depth from stem diameter of a tree species enables arborists, researchers, and urban forest managers to model costs and benefits, analyze alte...The development of equations to predict tree height, crown diameter, crown depth from stem diameter of a tree species enables arborists, researchers, and urban forest managers to model costs and benefits, analyze alternative management scenarios, and determine the best management practices for sustainable forests. The objective of this study was to develop regression prediction models for tree age, tree height, crown diameter, crown ratio and crown depth for A. senegal growing in Ferlo, in the northern Senegal. Four plantations of different years old (ISRA, 10 years old plantations, Ndodj, 8 years old plantations, Boulal, 5 years old plantations and Déali, 4 years old plantations) were selected. The following dendometric variables: crown height, crown diameter, stem diameter at the breast height, stem basal diameter (at 0.30 m) and the height from the tree base to first branch were measured on a total of 489 trees. The results suggested that the ecological structure of the different year old A. Senegal plantation revealed a bell-shaped form with left dissymmetric distribution indicating a predominance of individuals with small diameter at breast height. Allometry study of A. Senegal showed highly significant positive correlations (p = 0.00) between stem diameter at breast height, stem basal diameter, tree height, crown diameter and crown depth. Positive correlations were also found between crown diameter, tree height and crown height. Prediction models derived from these relationships can be used to estimate the tree height, stem diameter at breast height and crown depth from crown diameter with greater precision. As for A. Senegal age estimation, the established model is not strong as it can explain only 49.1% of the age variation.展开更多
Evidence-based selective cutting at prescribed intervals as part of good forest management can enhance the carbon sequestration capacity of the forest.The effect of forest management on carbon sequestration has,howeve...Evidence-based selective cutting at prescribed intervals as part of good forest management can enhance the carbon sequestration capacity of the forest.The effect of forest management on carbon sequestration has,however,not been quantified.Thus,carbon content of various organs was measured for 323 tree species,247 shrub species,and233 herb species in seven temperate coniferous and broadleaved mixed forests that were subjected to selective cutting with restoration durations of 100,55,45,36,25,14,and6 years to explore dynamic changes in carbon storage.The results showed that biomass carbon allocation in different organs followed a pattern:trunk>root>branch>leaf for all forests.With longer restoration durations,more carbon accumulated in different organs and in soils.Interestingly,when the restoration duration exceeded 50 years,carbon storage in ecosystem was larger than that in primary forests with 100-year cutting intervals,suggesting that a reasonable selective cutting interval can increase forest carbon sequestration.Mean diameter at breast height(DBH)and forest carbon storage were significantly positively correlated,and carbon storage of selectively cut forests exceeded that of primary forests when the stand mean DBH exceeded 15.66 cm.Therefore,mean DBH of forests can be an indicator for combining sustainable forest management and forest carbon sequestration.Additionally,the classic coefficients of 0.45 and 0.50 used to estimate carbon sequestration underestimated values by 2.65%and overestimated by 8.16%,respectively,in comparison with the measured carbon content from different plant organs.展开更多
Although numerous hypotheses have been proposed to explain the patterns of species diversity of forests at local and landscape levels,it is still difficult to predict the alpha diversity of species,especially in tropi...Although numerous hypotheses have been proposed to explain the patterns of species diversity of forests at local and landscape levels,it is still difficult to predict the alpha diversity of species,especially in tropical and subtropical natural forests where trees of different sizes and shapes are highly mixed.Size might characterize species diversity,and the possible correlation between these variables may contribute to the development of easy-to-use growth indicators to predict diversity and to understand the status of trees within a stand.In this study,diameter classes were divided using the equal diameter class(EDC)and minimum measured diameter(MMD)methods,and five species diversity indices were calculated for each diameter class of 14 permanent plots in five national nature reserves surrounding the Tropic of Cancer(23.5°),southwest China.The results show that species richness,abundance,and spatial diversity indices decreased in a typical inverted J-shape pattern with increasing diameter class and MMD,and could be easily modeled by a negative exponential function.The ShannonWiener index showed a linear decrease while Pielou’s evenness index displayed a linear increase,with a small degree of instability.The results suggest that species diversity in subtropical forests is closely related to tree size,and the relationship is possibly independent of habitat.Measuring DBH of some trees in a stand could be informative regarding species diversity and contribute to the investigation and assessment of biodiversity.展开更多
Background: Modelling aboveground biomass(AGB) in forest and woodland ecosystems is critical for accurate estimation of carbon stocks. However, scarcity of allometric models for predicting AGB remains an issue that ha...Background: Modelling aboveground biomass(AGB) in forest and woodland ecosystems is critical for accurate estimation of carbon stocks. However, scarcity of allometric models for predicting AGB remains an issue that has not been adequately addressed in Africa. In particular, locally developed models for estimating AGB in the tropical woodlands of Ghana have received little attention. In the absence of locally developed allometric models, Ghana will continue to use Tier 1 biomass data through the application of pantropic models. Without local allometric models it is not certain how Ghana would achieve Tier 2 and 3 levels under the United Nations programme for reducing emissions from deforestation and forest degradation. The objective of this study is to develop a mixedspecies allometric model for use in estimating AGB for the tropical woodlands in Ghana. Destructive sampling was carried out on 745 trees(as part of charcoal production) for the development of allometric equations. Diameter at breast height(dbh, i.e. 1.3 m above ground level), total tree height(H) and wood density(ρ) were used as predictors for the models. Seven models were compared and the best model selected based on model efficiency,bias(%) and corrected Akaike Information Criterion. The best model was validated by comparing its results with those of the pantropic model developed by Chave et al.(Glob Chang Biol 20:3177–3190, 2014) using equivalence test and conventional paired t-test.Results: The results revealed that the best model for estimating AGB in the tropical woodlands is AGB =0.0580ρ((dbh)2 H)0.999. The equivalence test showed that this model and the pantropic model developed by Chave et al.(Glob Chang Biol 20:3177–3190, 2014) were equivalent within ±10% of their mean predictions(p-values <0.0001 for one-tailed t-tests for both lower and upper bounds at 5% significant level), while the paired t-test revealed that the mean(181.44 ± 18.25 kg) of the model predictions of the best model of this study was significantly(n = 745, mean diff. = 16.50 ± 2.45 kg;S.E. = 1.25 kg;p < 0.001) greater than that(164.94 ± 15.82 kg) of the pantropic model of Chave et al.(Glob Chang Biol 20:3177–3190, 2014).Conclusion: The model developed in this study fills a critical gap in estimating AGB in tropical woodlands in Ghana and other West African countries with similar ecological conditions. Despite the equivalence with the pantropic model it remains superior to the model of Chave et al.(Glob Chang Biol 20:3177–3190, 2014) for the estimation of AGB in local tropical woodlands. It is a relevant tool for the attainment of Tier 2 and 3 levels for REDD+. The model is recommended for use in the tropical woodlands in Ghana and other West African countries in place of the use of pantropic models.展开更多
High-elevation,snow-dependent,semiarid ecosystems across southwestern United States are expected to be vulnerable to climate change,including drought and fi re,with implications for various aspects of the water cycle....High-elevation,snow-dependent,semiarid ecosystems across southwestern United States are expected to be vulnerable to climate change,including drought and fi re,with implications for various aspects of the water cycle.To that end,much less is known about the dynamics of transpiration,an important component of the water cycle across this region.At the individual-tree scale,transpiration is estimated by scaling mean sap fl ux density by the hydroactive sapwood area(SA).SA also remains a key factor in eff ectively scaling individual tree water-use to stand level.SA across large spatial scales is normally established by relating SA of a few trees to primary size measures,e.g.,diameter at breast height(DBH),tree height(H),or canopy diameter(CD).Considering the importance of SA in scaling transpiration,the primary objective of this study was therefore to establish six species-specifi c(aspen,maple,white fi r,ponderosa pine,Douglas fi r,Englemann spruce)allometric relationships between SA and three primary size measures(DBH,CD,or H)across two high-elevation,snow-dependent,semiarid ecosystems in New Mexico and Arizona.Based on multiple statistical criteria(coeffi cient of determination,index of agreement,Nash–Sutcliff e effi-ciency)and ease of measurement in the forest,we identifi ed DBH as the primary independent variable for estimating SA across all sites.Based on group regression analysis,we found allometric relationships to be signifi cantly(p<0.05)diff erent for the same species(ponderosa pine,Douglas-fi r)across diff erent sites.Overall,our allometric relationships provide a valuable database for estimating transpiration at diff erent spatial scales from sap fl ow data in some of our most vulnerable ecosystems.展开更多
The role of cocoa systems for climate change mitigation and adaptation has increased substantially because of their capability to trap carbon dioxide from the atmosphere and deposited in the cocoa trees as carbon. Dev...The role of cocoa systems for climate change mitigation and adaptation has increased substantially because of their capability to trap carbon dioxide from the atmosphere and deposited in the cocoa trees as carbon. Development of aboveground biomass (AGB) models for cocoa plantations is crucial for accurate estimation of carbon stocks in the cocoa systems, however, allometric models for estimating AGB for cocoa plantations remain a challenge for cocoa producing countries in Sub-Saharan Africa especially Ghana. The aim of this study is to develop allometric model that can be used for the estimation of AGB for cocoa plantations in Ghana, as well as West Africa. Destructive sampling was carried out on 110 cocoa trees obtained from the cocoa rehabilitation exercise for the development of the allometric models. Diameter at breast height (D), total tree height (H) and wood density (ρ) were used as predictors to develop seven models. The best model was selected based on coefficient of determination (R<sup>2</sup>), index of agreement (I<sub>A</sub>), root mean squared error (RMSE), bias (E%), mean absolute error (MAE) and corrected akaike information criterion (AIC<sub>C</sub>) and percentage relative standard error (PRSE) of the estimated parameters. The selected model, which was the one with the predictors D and ρ, was given as;AGB = 0.7217ρ(D<sup>2</sup>)<sup>0.921</sup>. It was compared with the Yuliasmara et al. (2009) cocoa model using equivalence test and paired sample t-test. The two models were found to be equivalent within ±10% of their mean predictions (p < 0.0001) for one-tailed tests for both lower and upper limits, while the paired sample t-test rejected the null hypothesis with mean difference of 14.16 kg between the two models. This study is significant because it has provided a model to estimate AGB for the cocoa plantations in Ghana which is very important for the Ghana Cocoa-Forest REDD+ Programme and also can be used by other West African cocoa producing countries.展开更多
基金supported by the projects (41790425,41971228) of Natural Science Foundation of China。
文摘Background: The LiBackpack is a recently developed backpack light detection and ranging(LiDAR) system that combines the flexibility of human walking with the nearby measurement in all directions to provide a novel and efficient approach to LiDAR remote sensing, especially useful for forest structure inventory. However, the measurement accuracy and error sources have not been systematically explored for this system.Method: In this study, we used the LiBackpack D-50 system to measure the diameter at breast height(DBH) for a Pinus sylvestris tree population in the Saihanba National Forest Park of China, and estimated the accuracy of LiBackpack measurements of DBH based on comparisons with manually measured DBH values in the field. We determined the optimal vertical slice thickness of the point cloud sample for achieving the most stable and accurate LiBackpack measurements of DBH for this tree species, and explored the effects of different factors on the measurement error.Result: 1) A vertical thickness of 30 cm for the point cloud sample slice provided the highest fitting accuracy(adjusted R2= 0.89, Root Mean Squared Error(RMSE) = 20.85 mm);2) the point cloud density had a significant negative, logarithmic relationship with measurement error of DBH and it explained 35.1% of the measurement error;3) the LiBackpack measurements of DBH were generally smaller than the manually measured values, and the corresponding measurement errors increased for larger trees;and 4) by considering the effect of the point cloud density correction, a transitional model can be fitted to approximate field measured DBH using LiBackpackscanned value with satisfactory accuracy(adjusted R2= 0.920;RMSE = 14.77 mm), and decrease the predicting error by 29.2%. Our study confirmed the reliability of the novel LiBackpack system in accurate forestry inventory, set up a useful transitional model between scanning data and the traditional manual-measured data specifically for P.sylvestris, and implied the applicable substitution of this new approach for more species, with necessary parameter calibration.
文摘We evaluated heartwood, sapwood and bark content in teak trees. A total of 27 sample plots were laid out in teak plantations raised by State Forest Department in Kamataka covering different age groups (11-36 years), density (516-2061 trees/ha) and sites. From these planta- tions, a total of 130 trees were felled for estimating the yield and bark content in relation to diameter at breast height (DBH), age and density. Bark content ranged from 22.2%-54.3%. Heartwood and sapwood con- tent were analyzed by sampling five trees each from two different planta- tions, one 30 years old at 553 trees.ha-1 and the other 32 years old at 911 trees.ha-1. The highest heartwood proportion of stem wood volume (over-bark) was 56.3% and the lowest was 37.1%.
基金Support was provided by the New Hampshire Agricultural Experiment Station.This is Scientific Contribution Number 2978supported by the USDA National Institute of Food and Agriculture,McIntire-Stennis Project 7003549
文摘Quadratic mean diameter is the most frequently reported descriptor of the diameter distribution of forests.As such,it is often used as an indicator of forest stand structure,developmental stage,and ecological and economic potential.However,quadratic mean diameter can be heavily influenced by the presence or absence of large numbers of small stems in lower canopy strata,and it is also sensitive to left-truncation of the diameter distribution,making its interpretation across inventories with different protocols challenging.Here,we examine three alternative expressions of stand diameter:the arithmetic and quadratic mean diameter of the thickest 100 trees per hectare,and the basal area-weighted mean diameter.Using data from the United States Forest Inventory and Analysis program for New York and New England,these alternative expressions showed closer correlation with multiple stand structural variables than did quadratic mean diameter,including merchantable cubic and board foot volume per hectare,aboveground live tree carbon per hectare,and total number of live and dead standing trees greater than 40 cm diameter at breast height per hectare(previously proposed as an index of old-growth structure).Arithmetic and quadratic mean diameter of the thickest 100 trees per hectare showed nearly identical performance,and the strongest correlations across the board.We develop closed-form expressions for these variables when the diameter distribution is a Weibull,and illustrate their behavior relative to quadratic mean diameter for that situation.While the reasons for prevalence of quadratic mean diameter as an indicator remain valid,we suggest that these alternative measures should be more widely reported and analyzed to give a more informative depiction of stand structure and development in complex forests.
文摘Advancements in airborne LiDAR analysis technology have made it possible to quantify forest resource volumes based on individual trees, and such technology may soon replace field surveys. Unlike individual tree detection or tree height measurements, diameter at breast height (DBH) is difficult to determine directly from measured data and is instead estimated indirectly using the correlation between crown size and DBH. Indicators that represent crown size include crown area, surface area, length, and length ratio, and were utilized with tree height as explanatory variables in ten combinations to determine a regression formula. DBH and tree height calculated from the regression formula were applied to an equation to calculate stem volumes of individual trees. Airborne LiDAR measurements were taken using ALS50-II and ALS60 (Leica) at a density of 4 points/m2. An evaluation of the relationship between the regression formulae and DBH estimates indicated that a combination of crown area, tree height, and crown ratio for Japanese cedar, and a combination of crown area and tree height for Japanese cypress, yielded the highest coefficients of determination. The average error and RMSE were 6.9% and 2.38 cm respectively for Japanese cedar, while the corresponding values for Japanese cypress were 8.35% and 2.51 cm. Once the relationship was extended to the stem volumes of individual trees, the average error was 14.4% and RMSE was 0.10 m3 for Japanese cedar. The corresponding values for Japanese cypress were 18.9% and 0.10 m3. These results demonstrate the potential use of airborne LiDAR as a substitute for field surveys.
基金Supported by General Project of Natural Science Research in Colleges and Universities in Anhui Province(KJHS2019B13)School-level Talents Start-up Project of Huangshan University(2019xkjq012)+1 种基金Horizontal Topic of Huangshan University(hxkt2020023)Undergraduate Innovation and Entrepreneurship Training Program of Anhui Province(S202110375082).
文摘[Objectives]This study was conducted to provide good basic research data for Cunninghamia lanceolata plantations in southern Anhui,so as to improve local ecological,economic and social benefits.[Methods]A 22-year-old near-mature C.lanceolata plantation in Lingnan Forest Farm,Xiuning County,Huangshan City,Anhui Province was investigated and analyzed by sample plot survey.[Results]The average DBH value of the C.lanceolata plantation at the lower slope was the largest,24.7%and 19.2%higher than those at the upper and middle slopes,respectively.The average single plant wood volume at the lower slope was 47.6%and 49.1%higher than those in the upper and middle slopes,respectively.However,the average tree heights at various slope positions showed little difference.Meanwhile,all the indexes showed the phenomenon of semi-shady slope>sunny slope>shady slope under different slope directions.Among them,the effect of slope position on DBH was extremely significant,but the effect of slope direction on DBH was not significant,and slope position,slope direction and the interaction of slope direction and slope position had no significant effects on the tree height of the C.lanceolata plantation.In addition,slope direction and slope position had extremely significant effects on single plant wood volume.From the overall growth situation of the C.lanceolata plantation in Lingnan Forest Farm,the slope position factor had greater effects on various indexes of forest growth than the slope direction factor,mainly manifested in that the lower slope was better than the middle slope,and the middle slope position was better than the upper slope,while although slope direction had some effect on the growth of the C.lanceolata plantation,the influence degree was not as significant as that of slope position.[Conclusions]This study provides some reference for the adjustment and optimization,development and renewal of C.lanceolata plantation structure in the later period in this area,as well as some data support for other theoretical research on economic forests.
基金supported by the National Natural Science Foundation of China(42275177)the National Key Scientifc and Technological Infrastructure project‘Earth System Science Numerical Simulator Facility’(EarthLab).
文摘The tree height-diameter at breast height(H-DBH)and crown radius-DBH(CR-DBH)relationships are key for forest carbon/biomass estimation,parameterization in vegetation models and vegetation-atmosphere interactions.Although the H-DBH relationship has been widely investigated on site or regional scales,and a few of studies have involved CR-DBH relationships based on plot-level data,few studies have quantitatively verifed the universality of these two relationships on a global scale.This study evaluated the ability of 29 functions to ft the H-DBH and CR-DBH relationships for six different plant functional types(PFTs)on a global scale,based on a global plant trait database.Results showed that most functions were able to capture the H-DBH relationship for tropical PFTs and boreal needleleaf trees relatively accurately,but slightly less for temperate PFTs and boreal broadleaf trees(BB).For boreal PFTs,the S-shaped Logistic function ftted the H-DBH relationship best,while for temperate PFTs the Chapman-Richards function performed well.For tropical needleleaf trees,the fractional function of DBH satisfactorily captured the H-DBH relationship,while for tropical broadleaf trees,the Weibull function and a composite function of fractions were the best choices.For CR-DBH,the ftting capabilities of all the functions were comparable for all PFTs except BB.The Logistic function performed best for two boreal PFTs and temperate broadleaf trees,but for temperate needleleaf trees and two tropical PFTs,some exponential functions demonstrated higher skill.This work provides valuable information for parameterization improvements in vegetation models and forest feld investigations.
基金supported by National Natural Science Foundation of China(Grant Nos:31360200,31270742)the German Volkswagen Foundation within the framework of EcoCAR project(Az.:88497)
文摘Since 2000, the Chinese government has implemented emergency water diversion measures to restore the damaged riparian forest ecosystem with dominant tree species Euphrat poplar(Populus euphratica Oliv.)at the lower reaches of the Tarim River. In the present study, comparative analysis of variations in the vitality of P. euphratica trees were made using 2005 and 2010 data to illustrate the revitalization process of riparian forest. Poplar trees within 300 m of the riverbed were positively revitalized, while the vitality of trees farther than 300 m from the river decreased. Population structure was studied to demonstrate the development of poplar community. In the first belt, the class structure for the diameter at breast height(DBH) of P. euphratica fit a logistic model, and the 2nd, 3rd and 4th belt curve fittings were close to a Gaussian model; in other plots they were bimodal. Cluster analysis of the composition of the DBH class of poplar trees demonstrated that those within 16–36 cm DBH were the most abundant(58.49% of total) in study area, under 16 cm of DBH were second(31.36%), and trees >40 cm DBH were the least abundant(10.15%). More than 80% of the trees were young and medium-sized, which means that the poplar forest community in the vicinity of the lower Tarim River is at a stable developmental stage. The abundance of juvenile trees of P. euphratica in the first and second measuring belts was 12.13% in 2005 and increased to 25.52% in 2010, which means that the emergency water transfer had a positive impact on the generation of young P. euphratica trees in the vicinity of the river.
基金Supported by the International Foundation for Science(D/3491-1)the Knowledge Innovation Program of the Chinese Academy of Sciences (KSCX2-SW-120)
文摘Information on changes in diameter at breast height (DBH) is important for net primary production (NPP) estimates, timing of forest inventory, and forest management. In the present study, patterns of DBH change were measured under field conditions during the dry season for three dominant and native tree species in a monsoon evergreen broad-leaved forest in the Dinghushan Biosphere Reserve. For each tree species, different patterns of DBH change were observed. In the case of the fast-growing tree species Castanopsis chinensis Hance, large diurnal fluctuations occur, with a peak DBH in the early morning (around 05:00 h) that decreases to a minimum by about 14:00 h. Both Schima superba Gardn. et Chemp and Cryptocarya chinensis (Hance) Hemsh exhibited less diurnal swelling and shrinkage. Diurnal fluctuations for these species were observed on a few occasions over the period of observation. Graphical comparisons and statistical analysis of changes in DBH with meteorological variables indicate that for different trees, the different changes in DBH observed responded to different meteorological variables. Large stem changes were found to occur for Ca. chinensis trees that were associated with variations in solar radiation. However, both S. superba and Cr. chinensis were found to be less sensitive to solar radiation. Changes in the DBH of these two species were found to be controlled mainly by soil temperature and soil moisture. During the later dry season, with a lower soil temperature and soil moisture, all three tree species stopped growing and only negligible shrinkage, expansion, or fluctuation occurred, suggesting that the optimum time to measure tree growth in the Dinghushan Biosphere Reserve is the later dry season.
文摘The development of equations to predict tree height, crown diameter, crown depth from stem diameter of a tree species enables arborists, researchers, and urban forest managers to model costs and benefits, analyze alternative management scenarios, and determine the best management practices for sustainable forests. The objective of this study was to develop regression prediction models for tree age, tree height, crown diameter, crown ratio and crown depth for A. senegal growing in Ferlo, in the northern Senegal. Four plantations of different years old (ISRA, 10 years old plantations, Ndodj, 8 years old plantations, Boulal, 5 years old plantations and Déali, 4 years old plantations) were selected. The following dendometric variables: crown height, crown diameter, stem diameter at the breast height, stem basal diameter (at 0.30 m) and the height from the tree base to first branch were measured on a total of 489 trees. The results suggested that the ecological structure of the different year old A. Senegal plantation revealed a bell-shaped form with left dissymmetric distribution indicating a predominance of individuals with small diameter at breast height. Allometry study of A. Senegal showed highly significant positive correlations (p = 0.00) between stem diameter at breast height, stem basal diameter, tree height, crown diameter and crown depth. Positive correlations were also found between crown diameter, tree height and crown height. Prediction models derived from these relationships can be used to estimate the tree height, stem diameter at breast height and crown depth from crown diameter with greater precision. As for A. Senegal age estimation, the established model is not strong as it can explain only 49.1% of the age variation.
基金supported financially by the Natural Science Foundation of China(31,800,368,31,872,683)the National Key R&D program of China(2017YFC0504004)by the program of Youth Innovation Research Team Project(LENOM2016Q0005)。
文摘Evidence-based selective cutting at prescribed intervals as part of good forest management can enhance the carbon sequestration capacity of the forest.The effect of forest management on carbon sequestration has,however,not been quantified.Thus,carbon content of various organs was measured for 323 tree species,247 shrub species,and233 herb species in seven temperate coniferous and broadleaved mixed forests that were subjected to selective cutting with restoration durations of 100,55,45,36,25,14,and6 years to explore dynamic changes in carbon storage.The results showed that biomass carbon allocation in different organs followed a pattern:trunk>root>branch>leaf for all forests.With longer restoration durations,more carbon accumulated in different organs and in soils.Interestingly,when the restoration duration exceeded 50 years,carbon storage in ecosystem was larger than that in primary forests with 100-year cutting intervals,suggesting that a reasonable selective cutting interval can increase forest carbon sequestration.Mean diameter at breast height(DBH)and forest carbon storage were significantly positively correlated,and carbon storage of selectively cut forests exceeded that of primary forests when the stand mean DBH exceeded 15.66 cm.Therefore,mean DBH of forests can be an indicator for combining sustainable forest management and forest carbon sequestration.Additionally,the classic coefficients of 0.45 and 0.50 used to estimate carbon sequestration underestimated values by 2.65%and overestimated by 8.16%,respectively,in comparison with the measured carbon content from different plant organs.
基金supported by the Open Foundation of Guangxi Key Laboratory of Forest Ecology and Conservation(Grant No.20221203)National Natural Science Foundation of China(Grant No.32060340)+1 种基金Scientific Research Capacity Building Project for Laibin Jinxiu Dayaoshan Forest Ecosystem Observation and Research Station of Guangxi under(Grant No.22-035-130-01)the Guangxi Key Research and Development Program(Grant No.Guike AB16380254)。
文摘Although numerous hypotheses have been proposed to explain the patterns of species diversity of forests at local and landscape levels,it is still difficult to predict the alpha diversity of species,especially in tropical and subtropical natural forests where trees of different sizes and shapes are highly mixed.Size might characterize species diversity,and the possible correlation between these variables may contribute to the development of easy-to-use growth indicators to predict diversity and to understand the status of trees within a stand.In this study,diameter classes were divided using the equal diameter class(EDC)and minimum measured diameter(MMD)methods,and five species diversity indices were calculated for each diameter class of 14 permanent plots in five national nature reserves surrounding the Tropic of Cancer(23.5°),southwest China.The results show that species richness,abundance,and spatial diversity indices decreased in a typical inverted J-shape pattern with increasing diameter class and MMD,and could be easily modeled by a negative exponential function.The ShannonWiener index showed a linear decrease while Pielou’s evenness index displayed a linear increase,with a small degree of instability.The results suggest that species diversity in subtropical forests is closely related to tree size,and the relationship is possibly independent of habitat.Measuring DBH of some trees in a stand could be informative regarding species diversity and contribute to the investigation and assessment of biodiversity.
基金Federal Ministry of Education and Research (BMBF) of Germany,funded the PhD programme of the lead author through the West African Science Service Centre for Climate Change and Adapted Land use (WASCAL)。
文摘Background: Modelling aboveground biomass(AGB) in forest and woodland ecosystems is critical for accurate estimation of carbon stocks. However, scarcity of allometric models for predicting AGB remains an issue that has not been adequately addressed in Africa. In particular, locally developed models for estimating AGB in the tropical woodlands of Ghana have received little attention. In the absence of locally developed allometric models, Ghana will continue to use Tier 1 biomass data through the application of pantropic models. Without local allometric models it is not certain how Ghana would achieve Tier 2 and 3 levels under the United Nations programme for reducing emissions from deforestation and forest degradation. The objective of this study is to develop a mixedspecies allometric model for use in estimating AGB for the tropical woodlands in Ghana. Destructive sampling was carried out on 745 trees(as part of charcoal production) for the development of allometric equations. Diameter at breast height(dbh, i.e. 1.3 m above ground level), total tree height(H) and wood density(ρ) were used as predictors for the models. Seven models were compared and the best model selected based on model efficiency,bias(%) and corrected Akaike Information Criterion. The best model was validated by comparing its results with those of the pantropic model developed by Chave et al.(Glob Chang Biol 20:3177–3190, 2014) using equivalence test and conventional paired t-test.Results: The results revealed that the best model for estimating AGB in the tropical woodlands is AGB =0.0580ρ((dbh)2 H)0.999. The equivalence test showed that this model and the pantropic model developed by Chave et al.(Glob Chang Biol 20:3177–3190, 2014) were equivalent within ±10% of their mean predictions(p-values <0.0001 for one-tailed t-tests for both lower and upper bounds at 5% significant level), while the paired t-test revealed that the mean(181.44 ± 18.25 kg) of the model predictions of the best model of this study was significantly(n = 745, mean diff. = 16.50 ± 2.45 kg;S.E. = 1.25 kg;p < 0.001) greater than that(164.94 ± 15.82 kg) of the pantropic model of Chave et al.(Glob Chang Biol 20:3177–3190, 2014).Conclusion: The model developed in this study fills a critical gap in estimating AGB in tropical woodlands in Ghana and other West African countries with similar ecological conditions. Despite the equivalence with the pantropic model it remains superior to the model of Chave et al.(Glob Chang Biol 20:3177–3190, 2014) for the estimation of AGB in local tropical woodlands. It is a relevant tool for the attainment of Tier 2 and 3 levels for REDD+. The model is recommended for use in the tropical woodlands in Ghana and other West African countries in place of the use of pantropic models.
基金A very special note of thanks to Dr.Valerie Trouet,Dr.David J.P.Moore,Emily Dynes,Ian Shiach,Dr.Julia N.Perdrial,Michael Pohlmann and Lori Lovell during the collection of tree core samples and the tree survey.M.R.A.was supported by the DOE Regional and Global Climate Modeling program DE-SC0016011 and by the University of Arizona Water,Environment,and Energy Solutions(WEES)and Sustainability of Semi-Arid Hydrology and Riparian Areas(SAHRA)programs.
文摘High-elevation,snow-dependent,semiarid ecosystems across southwestern United States are expected to be vulnerable to climate change,including drought and fi re,with implications for various aspects of the water cycle.To that end,much less is known about the dynamics of transpiration,an important component of the water cycle across this region.At the individual-tree scale,transpiration is estimated by scaling mean sap fl ux density by the hydroactive sapwood area(SA).SA also remains a key factor in eff ectively scaling individual tree water-use to stand level.SA across large spatial scales is normally established by relating SA of a few trees to primary size measures,e.g.,diameter at breast height(DBH),tree height(H),or canopy diameter(CD).Considering the importance of SA in scaling transpiration,the primary objective of this study was therefore to establish six species-specifi c(aspen,maple,white fi r,ponderosa pine,Douglas fi r,Englemann spruce)allometric relationships between SA and three primary size measures(DBH,CD,or H)across two high-elevation,snow-dependent,semiarid ecosystems in New Mexico and Arizona.Based on multiple statistical criteria(coeffi cient of determination,index of agreement,Nash–Sutcliff e effi-ciency)and ease of measurement in the forest,we identifi ed DBH as the primary independent variable for estimating SA across all sites.Based on group regression analysis,we found allometric relationships to be signifi cantly(p<0.05)diff erent for the same species(ponderosa pine,Douglas-fi r)across diff erent sites.Overall,our allometric relationships provide a valuable database for estimating transpiration at diff erent spatial scales from sap fl ow data in some of our most vulnerable ecosystems.
文摘The role of cocoa systems for climate change mitigation and adaptation has increased substantially because of their capability to trap carbon dioxide from the atmosphere and deposited in the cocoa trees as carbon. Development of aboveground biomass (AGB) models for cocoa plantations is crucial for accurate estimation of carbon stocks in the cocoa systems, however, allometric models for estimating AGB for cocoa plantations remain a challenge for cocoa producing countries in Sub-Saharan Africa especially Ghana. The aim of this study is to develop allometric model that can be used for the estimation of AGB for cocoa plantations in Ghana, as well as West Africa. Destructive sampling was carried out on 110 cocoa trees obtained from the cocoa rehabilitation exercise for the development of the allometric models. Diameter at breast height (D), total tree height (H) and wood density (ρ) were used as predictors to develop seven models. The best model was selected based on coefficient of determination (R<sup>2</sup>), index of agreement (I<sub>A</sub>), root mean squared error (RMSE), bias (E%), mean absolute error (MAE) and corrected akaike information criterion (AIC<sub>C</sub>) and percentage relative standard error (PRSE) of the estimated parameters. The selected model, which was the one with the predictors D and ρ, was given as;AGB = 0.7217ρ(D<sup>2</sup>)<sup>0.921</sup>. It was compared with the Yuliasmara et al. (2009) cocoa model using equivalence test and paired sample t-test. The two models were found to be equivalent within ±10% of their mean predictions (p < 0.0001) for one-tailed tests for both lower and upper limits, while the paired sample t-test rejected the null hypothesis with mean difference of 14.16 kg between the two models. This study is significant because it has provided a model to estimate AGB for the cocoa plantations in Ghana which is very important for the Ghana Cocoa-Forest REDD+ Programme and also can be used by other West African cocoa producing countries.