Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and ...Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.展开更多
Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years...Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin.展开更多
The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigate...The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigates the possible mechanisms accounting for these distinct TPSC changes.Our results indicate that the decrease in W_TPSC is primarily attributed to rising temperatures,while the increase in E_TPSC is closely linked to enhanced precipitation.Local circulation analysis shows that the essential system responsible for the TPSC changes is a significant anticyclonic system centered over the northwestern TP.The anomalous descending motion and adiabatic heating linked to this anticyclone leads to warmer temperatures and consequent snowmelt over the western TP.Conversely,anomalous easterly winds along the southern flank of this anticyclone serve to transport additional moisture from the North Pacific,leading to an increase in snowfall over the eastern TP.Further analysis reveals that the anomalous anticyclone is associated with an atmospheric wave pattern that originates from upstream regions.Springtime warming of the subtropical North Atlantic(NA)sea surface temperature(SST)induces an atmospheric pattern resembling a wave train that travels eastward across the Eurasian continent before reaching the TP.Furthermore,the decline in winter sea ice(SIC)over the Barents Sea exerts a persistent warming influence on the atmosphere,inducing an anomalous atmospheric circulation that propagates southeastward and strengthens the northwest TP anticyclone in spring.Additionally,an enhancement of subtropical stationary waves has resulted in significant increases in easterly moisture fluxes over the coastal areas of East Asia,which further promotes more snowfall over eastern TP.展开更多
Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 19...Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 1989-2019 and projected the trend by 2040. Landsat images, field observations, key informant interviews and focus group discussions were used to collect data. Changes in cropland, forestland, built up area, grazing land, wetland and open water bodies were analyzed in ArcGIS version 10.2.2 and ERDAS IMAGINE 14 software and a Markov chain model. All the LULC classes increased in area except grazing land. Forest land and builtup area between 2009-2019 increased by 370.03% and 229.53% respectively. Projections revealed an increase in forest land and builtup area by 2030 and only built up area by 2040. LULCC in the catchment results from population pressure, reduced soil fertility and high value of agricultural products.展开更多
Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions,leading to potential conflicts among natural and human-related issues as well as among stakeh...Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions,leading to potential conflicts among natural and human-related issues as well as among stakeholders.This study introduced economic standards for farmers.A hybrid approach(CA-ABM)of cellular automaton(CA)and an agent-based model(ABM)was developed to effectively deal with social and land-use synergic issues to examine human–environment interactions and projections of land-use conversions for a humid basin in south China.Natural attributes and socioeconomic data were used to analyze land use/land cover and its drivers of change.The major modules of the CA-ABM are initialization,migration,assets,land suitability,and land-use change decisions.Empirical estimates of the factors influencing the urban land-use conversion probability were captured using parameters based on a spatial logistic regression(SLR)model.Simultaneously,multicriteria evaluation(MCE)and Markov models were introduced to obtain empirical estimates of the factors affecting the probability of ecological land conversion.An agent-based CA-SLR-MCE-Markov(ABCSMM)land-use conversion model was proposed to explore the impacts of policies on land-use conversion.This model can reproduce observed land-use patterns and provide links for forest transition and urban expansion to land-use decisions and ecosystem services.The results demonstrated land-use simulations under multi-policy scenarios,revealing the usefulness of the model for normative research on land-use management.展开更多
The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial an...The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region.展开更多
The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influ...The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influenced by both expansion and degradation factors.Therefore,it is important to study the spatiotemporal variation of vegetation cover for the sustainable management of oasis resources.This study used Landsat satellite images in 1987,2002,and 2021 to monitor the spatiotemporal variation of vegetation cover in the Al-Ahsa Oasis,applied multi-temporal Normalized Difference Vegetation Index(NDVI)data spanning from 1987 to 2021 to assess environmental and spatiotemporal variations that have occurred in the Al-Ahsa Oasis,and investigated the factors influencing these variation.This study reveals that there is a significant improvement in the ecological environment of the oasis during 1987–2021,with increase of NDVI values being higher than 0.10.In 2021,the highest NDVI value is generally above 0.70,while the lowest value remains largely unchanged.However,there is a remarkable increase in NDVI values between 0.20 and 0.30.The area of low NDVI values(0.00–0.20)has remained almost stable,but the region with high NDVI values(above 0.70)expands during 1987–2021.Furthermore,this study finds that in 1987–2002,the increase of vegetation cover is most notable in the northern region of the study area,whereas from 2002 to 2021,the increase of vegetation cover is mainly concentrated in the northern and southern regions of the study area.From 1987 to 2021,NDVI values exhibit the most pronounced variation,with a significant increase in the“green”zone(characterized by NDVI values exceeding 0.40),indicating a substantial enhancement in the ecological environment of the oasis.The NDVI classification is validated through 50 ground validation points in the study area,demonstrating a mean accuracy of 92.00%in the detection of vegetation cover.In general,both the user’s and producer’s accuracies of NDVI classification are extremely high in 1987,2002,and 2021.Finally,this study suggests that environmental authorities should strengthen their overall forestry project arrangements to combat sand encroachment and enhance the ecological environment of the Al-Ahsa Oasis.展开更多
Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Lan...Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.展开更多
Local populations in Cameroon thrive on forest resources and the flow of ecosystem services they provide are pivotal in sustaining national economy, improving people’s lives, safeguarding biodiversity, and mitigating...Local populations in Cameroon thrive on forest resources and the flow of ecosystem services they provide are pivotal in sustaining national economy, improving people’s lives, safeguarding biodiversity, and mitigating the impacts of environmental changes. The exploitation of these resources invariably leads to deforestation and forest degradation. This study was designed to evaluate land use land cover change (LULCC) in the Eseka alluvial gold mining district with the aid of Landsat images. In the investigation of forest cover change, four Landsat satellite images for (1990, 2002, 2015 and 2022) were used. Ground-truthing also helped to identify the activities carried out by the local population and to determine agents, drivers and pressures of land use and land cover change. Four main land cover classes namely: forest, agricultural land, settlement/mining camps and water bodies were selected. Between 1990 and 2022, the proportion of forest decreased from 98% to 34% while those of agricultural land and settlement/mining camps increased from 2% to 60% and 0.54% to 6% respectively. Analysis showed ongoing deforestation with forest cover loss of ~98,263 ha in 32 years giving a cover change percentage of 63.94%. Kappa coefficient for the study period ranged from 0.92 to 0.99. Forest cover loss could be attributed to farming activities, wood extraction and alluvial gold mining activities. Economic motives notably the need to increase household income from a frequent demand for farm and wood products in neighbouring towns and the quest for gold were the main drivers of these activities. Hence, this study assesses the impact of human activities from the mining sector on the forest ecosystem in a bid to inform mitigation policies.展开更多
The snow cover over the Taurus Mountains affects water supply, agriculture, and hydropower generation in the region. In this study, we analyzed the monthly Snow Cover Extent(SCE) from November to April in the Central ...The snow cover over the Taurus Mountains affects water supply, agriculture, and hydropower generation in the region. In this study, we analyzed the monthly Snow Cover Extent(SCE) from November to April in the Central Taurus Mountains(Bolkar, Aladaglar, Tahtali and Binboga Mountains) from 1981 to 2021. Linear trends of snow cover season(November to April) over the last 41 years showed decreases in SCE primarily at lower elevations. The downward trend in SCE was found to be more pronounced and statistically significant for only November and March. SCE in the Central Taurus Mountains has declined about-6.3% per decade for 2500-3000 m in November and about-6.0% per decade for 1000-1500 m and 3000+ m in March over the last 41 years. The loss of SCE has become evident since the 2000s, and the lowest negative anomalies in SCE have been observed in 2014, 2001, and 2007 in the last 41 years, which are consistent with an increase in air temperature and decreased precipitation. SCE was correlated with both mean temperature and precipitation, with temperature having a greater relative importance at all elevated gradients. Results showed that there is a strong linear relationship between SCE and the mean air temperature(r =-0.80) and precipitation(r = 0.44) for all elevated gradients during the snow season. The Arctic Oscillation(AO), the North Atlantic Oscillation(NAO), and the Mediterranean Oscillation(MO) winter indices were used to explain the year-to-year variability in SCE over the Central Taurus Mountains. The results showed that the inter-annual variability observed in the winter SCE on the Central Taurus Mountains was positively correlated with the phases of the winter AO, NAO and MO, especially below 2000 m elevation.展开更多
Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality ...Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.展开更多
With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to th...With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to the applications of earth observation and information retrieval,including climate change monitoring,natural resource investigation,ecological environment protection,and territorial space planning.Over the past decade,artificial intelligence technology represented by deep learning has made significant contributions to the field of Earth observation.Therefore,this review will focus on the bottlenecks and development process of using deep learning methods for land use/land cover mapping of the Earth’s surface.Firstly,it introduces the basic framework of semantic segmentation network models for land use/land cover mapping.Then,we summarize the development of semantic segmentation models in geographical field,focusing on spatial and semantic feature extraction,context relationship perception,multi-scale effects modelling,and the transferability of models under geographical differences.Then,the application of semantic segmentation models in agricultural management,building boundary extraction,single tree segmentation and inter-species classification are reviewed.Finally,we discuss the future development prospects of deep learning technology in the context of remote sensing big data.展开更多
Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and...Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and transfer rate of LULC in the Jinghe River Basin(JRB),China using LULC data from 2000 to 2020.Through trajectory analysis,knowledge maps,chord diagrams,and standard deviation ellipse method,we examined the spatiotemporal characteristics of LULC changes.We further established an index system encompassing natural factors(digital elevation model(DEM),slope,aspect,and curvature),socio-economic factors(gross domestic product(GDP)and population),and accessibility factors(distance from railways,distance from highways,distance from water,and distance from residents)to investigate the driving mechanisms of LULC changes using factor detector and interaction detector in the geographical detector(Geodetector).The key findings indicate that from 2000 to 2020,the JRB experienced significant LULC changes,particularly for farmland,forest,and grassland.During the study period,LULC change trajectories were categorized into stable,early-stage,late-stage,repeated,and continuous change types.Besides the stable change type,the late-stage change type predominated the LULC change trajectories,comprising 83.31% of the total change area.The period 2010-2020 witnessed more active LULC changes compared to the period 2000-2010.The LULC changes exhibited a discrete spatial expansion trend during 2000-2020,predominantly extending from southeast to northwest of the JRB.Influential driving factors on LULC changes included slope,GDP,and distance from highways.The interaction detection results imply either bilinear or nonlinear enhancement for any two driving factors impacting the LULC changes from 2000 to 2020.This comprehensive understanding of the spatiotemporal characteristics and driving mechanisms of LULC changes offers valuable insights for the planning and sustainable management of LULC in the JRB.展开更多
Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce...Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce the changes. The study aims to evaluate and quantify the historical changes in land use and land cover in Mukumbura (Ward 2), Mt Darwin, Zimbabwe, from 2002 to 2022. The objective of the study was to analyse the LULC changes in Ward 2 (Mukumbura), Mt Darwin, Northern Zimbabwe, for a period of 20 years using geospatial techniques. Landsat satellite images were processed using Google Earth Engine (GEE) and the supervised classification with maximum likelihood algorithm was employed to generate LULC maps between 2002 and 2022 with a five (5) year interval, investigating the following variables, forest cover, barren land, water cover and the fields. Findings revealed a substantial reduction in forest cover by 38.8%, water bodies (wetlands, ponds, and rivers) declined by 55.6%, whilst fields (crop/agricultural fields) increased by 93.3% and the barren land cover increased by 26.3% from 2002 to 2022. These findings point to substantial changes in LULC over the observed years. LULC changes have resulted in habitat fragmentation, reduced biodiversity, and the disruption of ecosystem functions. The study concludes that if these deforestation trends, cultivation, and settlement land expansion continue, the ward will have limited indigenous fruit trees. Therefore, the causes for LULC changes must be controlled, sustainable forest resources use practiced, hence the need to domesticate the indigenous fruit trees in arborloo toilets.展开更多
The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the la...The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.展开更多
The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holisti...The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.展开更多
Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land ...Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land cover(LULC)changes on LST and determined the intensity of urban heat island(UHI)in New Town Kolkata(a smart city),eastern India,from 1991 to 2021 at 10-a intervals using various series of Landsat multi-spectral and thermal bands.This study used the maximum likelihood algorithm for image classification and other methods like the correlation analysis and hotspot analysis(Getis–Ord Gi^(*) method)to examine the impact of LULC changes on urban thermal environment.This study noticed that the area percentage of built-up land increased rapidly from 21.91%to 45.63%during 1991–2021,with a maximum positive change in built-up land and a maximum negative change in sparse vegetation.The mean temperature significantly increased during the study period(1991–2021),from 16.31℃to 22.48℃in winter,29.18℃to 34.61℃in summer,and 19.18℃to 27.11℃in autumn.The result showed that impervious surfaces contribute to higher LST,whereas vegetation helps decrease it.Poor ecological status has been found in built-up land,and excellent ecological status has been found in vegetation and water body.The hot spot and cold spot areas shifted their locations every decade due to random LULC changes.Even after New Town Kolkata became a smart city,high LST has been observed.Overall,this study indicated that urbanization and changes in LULC patterns can influence the urban thermal environment,and appropriate planning is needed to reduce LST.This study can help policy-makers create sustainable smart cities.展开更多
Based on the biological characteristics of Solenopsis invicta and the structural characteristics of its ant nest,a fast and efficient closed treatment device was developed.Compared with the simple chemical treatment c...Based on the biological characteristics of Solenopsis invicta and the structural characteristics of its ant nest,a fast and efficient closed treatment device was developed.Compared with the simple chemical treatment commonly used at present,the developed treatment device(the ant nest control cover)is a fast and efficient method to exterminate S.invicta in 7 d,featured by short course,quick results and good effect.展开更多
The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are e...The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are extremely fragile and sensitive to external environmental changes.Land use and land cover(LULC)changes significantly impact soil structure and function,thus affecting the soil multifunctionality(SMF).However,the effect of LULC changes on the SMF in the drylands of China has rarely been reported.In this study,we investigated the characteristics of the SMF changes based on soil data in the 1980s from the National Tibetan Plateau Data Center.We explored the drivers of the SMF changes under different LULC types(including forest,grassland,shrubland,and desert)and used structural equation modeling to explore the main driver of the SMF changes.The results showed that the SMF under the four LULC types decreased in the following descending order:forest,grassland,shrubland,and desert.The main driver of the SMF changes under different LULC types was mean annual temperature(MAT).In addition to MAT,pH in forest,soil moisture(SM)and soil biodiversity index in grassland,SM in shrubland,and aridity index in desert are crucial factors for the SMF changes.Therefore,the SMF in the drylands of China is regulated mainly by MAT and pH,and comprehensive assessments of the SMF in drylands need to be performed regarding LULC changes.The results are beneficial for evaluating the SMF among different LULC types and predicting the SMF under global climate change.展开更多
Information on the dynamics of savannah is important to a country's plan to overcome the problems of uncontrolled development and environmental hazards. Taking the reserve partielle de Dosso, Niger as the case stu...Information on the dynamics of savannah is important to a country's plan to overcome the problems of uncontrolled development and environmental hazards. Taking the reserve partielle de Dosso, Niger as the case study area, this paper analyzed the long-term land use land cover change from 2002 to 2022. Satellite images were processed by using Google Earth Engine (GEE). Therefore, four major land cover classes were identified based on spectral characteristics of Land sat, namely, built-up, vegetation, cropland, bare land and water. The result revealed that barren and built-up areas increased at the expense of vegetation and water. From the four major land use land cover the large area is covered by vegetation which comprises about 192963.5 hectares followed by cropland and water consisting of 32506.43 and 1596.4 hectares respectively. The built-up area gained substantial area (most) during the study period. The reduction in some of the land cover/uses underlines the dangerous trend of the pressure poised by population growth and the changing functionality. Land cover change is influenced by a variety of societal factors operating on several spatial and temporal levels. The area estimates and spatial distributions of the LULC classes produced from the current study will assist local authorities, managers, and other stakeholders in decision-making and planning regarding forest land cover and uses.展开更多
基金supported by the Central Government to Guide Local Technological Development(23ZYQH0298)the Science and Technology Project of Gansu Province(20JR10RA656,22JR5RA416)the Science and Technology Project of Wuwei City(WW2202YFS006).
文摘Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.
基金the Space Application Center, Ahmedabad (ISRO) for providing field support under “Integrated studies of Himalayan Cryosphere” programthe Glaciology Group, Jawaharlal Nehru University for providing necessary support for this research+1 种基金the grants from SERB (CRG/2020/004877) and MOES/16/19/2017-RDEAS projectsthe support from ISRO/RES/4/690/21-22 project
文摘Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin.
基金This research is funded by the National Natural Science Foundation of China(Grant No.42075050)Fundamental Research Funds for the Central Universities(Grant No.K20220232).
文摘The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigates the possible mechanisms accounting for these distinct TPSC changes.Our results indicate that the decrease in W_TPSC is primarily attributed to rising temperatures,while the increase in E_TPSC is closely linked to enhanced precipitation.Local circulation analysis shows that the essential system responsible for the TPSC changes is a significant anticyclonic system centered over the northwestern TP.The anomalous descending motion and adiabatic heating linked to this anticyclone leads to warmer temperatures and consequent snowmelt over the western TP.Conversely,anomalous easterly winds along the southern flank of this anticyclone serve to transport additional moisture from the North Pacific,leading to an increase in snowfall over the eastern TP.Further analysis reveals that the anomalous anticyclone is associated with an atmospheric wave pattern that originates from upstream regions.Springtime warming of the subtropical North Atlantic(NA)sea surface temperature(SST)induces an atmospheric pattern resembling a wave train that travels eastward across the Eurasian continent before reaching the TP.Furthermore,the decline in winter sea ice(SIC)over the Barents Sea exerts a persistent warming influence on the atmosphere,inducing an anomalous atmospheric circulation that propagates southeastward and strengthens the northwest TP anticyclone in spring.Additionally,an enhancement of subtropical stationary waves has resulted in significant increases in easterly moisture fluxes over the coastal areas of East Asia,which further promotes more snowfall over eastern TP.
文摘Analysis of catchment Land use/Land cover (LULC) change is a vital tool in ensuring sustainable catchment management. The study analyzed land use/land cover changes in the Rwizi catchment, south western Uganda from 1989-2019 and projected the trend by 2040. Landsat images, field observations, key informant interviews and focus group discussions were used to collect data. Changes in cropland, forestland, built up area, grazing land, wetland and open water bodies were analyzed in ArcGIS version 10.2.2 and ERDAS IMAGINE 14 software and a Markov chain model. All the LULC classes increased in area except grazing land. Forest land and builtup area between 2009-2019 increased by 370.03% and 229.53% respectively. Projections revealed an increase in forest land and builtup area by 2030 and only built up area by 2040. LULCC in the catchment results from population pressure, reduced soil fertility and high value of agricultural products.
基金supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(2021ZT090543)the National Natural Science Foundation of China(U20A20117)the Key-Area Research and Development Program of Guangdong Province(2020B1111380003).
文摘Land use/land cover represents the interactive and comprehensive influences between human activities and natural conditions,leading to potential conflicts among natural and human-related issues as well as among stakeholders.This study introduced economic standards for farmers.A hybrid approach(CA-ABM)of cellular automaton(CA)and an agent-based model(ABM)was developed to effectively deal with social and land-use synergic issues to examine human–environment interactions and projections of land-use conversions for a humid basin in south China.Natural attributes and socioeconomic data were used to analyze land use/land cover and its drivers of change.The major modules of the CA-ABM are initialization,migration,assets,land suitability,and land-use change decisions.Empirical estimates of the factors influencing the urban land-use conversion probability were captured using parameters based on a spatial logistic regression(SLR)model.Simultaneously,multicriteria evaluation(MCE)and Markov models were introduced to obtain empirical estimates of the factors affecting the probability of ecological land conversion.An agent-based CA-SLR-MCE-Markov(ABCSMM)land-use conversion model was proposed to explore the impacts of policies on land-use conversion.This model can reproduce observed land-use patterns and provide links for forest transition and urban expansion to land-use decisions and ecosystem services.The results demonstrated land-use simulations under multi-policy scenarios,revealing the usefulness of the model for normative research on land-use management.
文摘The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region.
文摘The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influenced by both expansion and degradation factors.Therefore,it is important to study the spatiotemporal variation of vegetation cover for the sustainable management of oasis resources.This study used Landsat satellite images in 1987,2002,and 2021 to monitor the spatiotemporal variation of vegetation cover in the Al-Ahsa Oasis,applied multi-temporal Normalized Difference Vegetation Index(NDVI)data spanning from 1987 to 2021 to assess environmental and spatiotemporal variations that have occurred in the Al-Ahsa Oasis,and investigated the factors influencing these variation.This study reveals that there is a significant improvement in the ecological environment of the oasis during 1987–2021,with increase of NDVI values being higher than 0.10.In 2021,the highest NDVI value is generally above 0.70,while the lowest value remains largely unchanged.However,there is a remarkable increase in NDVI values between 0.20 and 0.30.The area of low NDVI values(0.00–0.20)has remained almost stable,but the region with high NDVI values(above 0.70)expands during 1987–2021.Furthermore,this study finds that in 1987–2002,the increase of vegetation cover is most notable in the northern region of the study area,whereas from 2002 to 2021,the increase of vegetation cover is mainly concentrated in the northern and southern regions of the study area.From 1987 to 2021,NDVI values exhibit the most pronounced variation,with a significant increase in the“green”zone(characterized by NDVI values exceeding 0.40),indicating a substantial enhancement in the ecological environment of the oasis.The NDVI classification is validated through 50 ground validation points in the study area,demonstrating a mean accuracy of 92.00%in the detection of vegetation cover.In general,both the user’s and producer’s accuracies of NDVI classification are extremely high in 1987,2002,and 2021.Finally,this study suggests that environmental authorities should strengthen their overall forestry project arrangements to combat sand encroachment and enhance the ecological environment of the Al-Ahsa Oasis.
文摘Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.
文摘Local populations in Cameroon thrive on forest resources and the flow of ecosystem services they provide are pivotal in sustaining national economy, improving people’s lives, safeguarding biodiversity, and mitigating the impacts of environmental changes. The exploitation of these resources invariably leads to deforestation and forest degradation. This study was designed to evaluate land use land cover change (LULCC) in the Eseka alluvial gold mining district with the aid of Landsat images. In the investigation of forest cover change, four Landsat satellite images for (1990, 2002, 2015 and 2022) were used. Ground-truthing also helped to identify the activities carried out by the local population and to determine agents, drivers and pressures of land use and land cover change. Four main land cover classes namely: forest, agricultural land, settlement/mining camps and water bodies were selected. Between 1990 and 2022, the proportion of forest decreased from 98% to 34% while those of agricultural land and settlement/mining camps increased from 2% to 60% and 0.54% to 6% respectively. Analysis showed ongoing deforestation with forest cover loss of ~98,263 ha in 32 years giving a cover change percentage of 63.94%. Kappa coefficient for the study period ranged from 0.92 to 0.99. Forest cover loss could be attributed to farming activities, wood extraction and alluvial gold mining activities. Economic motives notably the need to increase household income from a frequent demand for farm and wood products in neighbouring towns and the quest for gold were the main drivers of these activities. Hence, this study assesses the impact of human activities from the mining sector on the forest ecosystem in a bid to inform mitigation policies.
文摘The snow cover over the Taurus Mountains affects water supply, agriculture, and hydropower generation in the region. In this study, we analyzed the monthly Snow Cover Extent(SCE) from November to April in the Central Taurus Mountains(Bolkar, Aladaglar, Tahtali and Binboga Mountains) from 1981 to 2021. Linear trends of snow cover season(November to April) over the last 41 years showed decreases in SCE primarily at lower elevations. The downward trend in SCE was found to be more pronounced and statistically significant for only November and March. SCE in the Central Taurus Mountains has declined about-6.3% per decade for 2500-3000 m in November and about-6.0% per decade for 1000-1500 m and 3000+ m in March over the last 41 years. The loss of SCE has become evident since the 2000s, and the lowest negative anomalies in SCE have been observed in 2014, 2001, and 2007 in the last 41 years, which are consistent with an increase in air temperature and decreased precipitation. SCE was correlated with both mean temperature and precipitation, with temperature having a greater relative importance at all elevated gradients. Results showed that there is a strong linear relationship between SCE and the mean air temperature(r =-0.80) and precipitation(r = 0.44) for all elevated gradients during the snow season. The Arctic Oscillation(AO), the North Atlantic Oscillation(NAO), and the Mediterranean Oscillation(MO) winter indices were used to explain the year-to-year variability in SCE over the Central Taurus Mountains. The results showed that the inter-annual variability observed in the winter SCE on the Central Taurus Mountains was positively correlated with the phases of the winter AO, NAO and MO, especially below 2000 m elevation.
基金supported by the National Natural Science Foundation of China(Grant No.31670473)the Wuhan Institute of Technology funding to Dr.Siyue Li(Grant No.21QD02).
文摘Riparian land use/land cover(LULC)plays a crucial role in maintaining riverine water quality by altering the transport of pollutants and nutrients.Nevertheless,establishing a direct relationship between water quality and LULC is challenging due to the multi-indicator nature of both factors.Water quality encompasses a multitude of physical,chemical,and biological parameters,while LULC represents a diverse array of land use types.Riparian habitat quality(RHQ)serves as an indicator of LULC.Yet,it remains to be seen whether RHQ can act as a proxy of LULC for assessing the impact of LULC on riverine water quality.This study examines the interplay between RHQ,LULC and water quality,and develops a comprehensive indicator to predict water quality.We measured several water quality parameters,including pH(potential of hydrogen),TN(total nitrogen),TP(total phosphorus),T_(water)(water temperature),DO(dissolved oxygen),and EC(electrical conductivity)of the Yue and Jinshui Rivers draining to the Han River during 2016,2017 and 2018.The water quality index(WQI)was further calculated.RHQ is assessed by the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs)model.Our study found noticeable seasonal differences in water quality,with a higher WQI observed in the dry season.The RHQ was strongly correlated with LULC compositions.RHQ positively correlated with WQI,and DO concentration and vegetation land were negatively correlated with T_(water),TN,TP,EC,cropland,and construction land.These correlations were stronger in the rainy season.Human-dominated land,such as construction land and cropland,significantly contributed to water quality degradation,whereas vegetation promoted water quality.Regression models showed that the RHQ explained variations in WQI better than LULC types.Our study concludes that RHQ is a new and comprehensive indicator for predicting the dynamics of riverine water quality.
基金National Natural Science Foundation of China(Nos.42371406,42071441,42222106,61976234).
文摘With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to the applications of earth observation and information retrieval,including climate change monitoring,natural resource investigation,ecological environment protection,and territorial space planning.Over the past decade,artificial intelligence technology represented by deep learning has made significant contributions to the field of Earth observation.Therefore,this review will focus on the bottlenecks and development process of using deep learning methods for land use/land cover mapping of the Earth’s surface.Firstly,it introduces the basic framework of semantic segmentation network models for land use/land cover mapping.Then,we summarize the development of semantic segmentation models in geographical field,focusing on spatial and semantic feature extraction,context relationship perception,multi-scale effects modelling,and the transferability of models under geographical differences.Then,the application of semantic segmentation models in agricultural management,building boundary extraction,single tree segmentation and inter-species classification are reviewed.Finally,we discuss the future development prospects of deep learning technology in the context of remote sensing big data.
基金partly funded by the National Key Research and Development Program of China(NK2023190801)the National Foreign Experts Program of China(G2023041024L)the Key Scientific Research Program of Shaanxi Provincial Education Department,China(21JT028)。
文摘Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and transfer rate of LULC in the Jinghe River Basin(JRB),China using LULC data from 2000 to 2020.Through trajectory analysis,knowledge maps,chord diagrams,and standard deviation ellipse method,we examined the spatiotemporal characteristics of LULC changes.We further established an index system encompassing natural factors(digital elevation model(DEM),slope,aspect,and curvature),socio-economic factors(gross domestic product(GDP)and population),and accessibility factors(distance from railways,distance from highways,distance from water,and distance from residents)to investigate the driving mechanisms of LULC changes using factor detector and interaction detector in the geographical detector(Geodetector).The key findings indicate that from 2000 to 2020,the JRB experienced significant LULC changes,particularly for farmland,forest,and grassland.During the study period,LULC change trajectories were categorized into stable,early-stage,late-stage,repeated,and continuous change types.Besides the stable change type,the late-stage change type predominated the LULC change trajectories,comprising 83.31% of the total change area.The period 2010-2020 witnessed more active LULC changes compared to the period 2000-2010.The LULC changes exhibited a discrete spatial expansion trend during 2000-2020,predominantly extending from southeast to northwest of the JRB.Influential driving factors on LULC changes included slope,GDP,and distance from highways.The interaction detection results imply either bilinear or nonlinear enhancement for any two driving factors impacting the LULC changes from 2000 to 2020.This comprehensive understanding of the spatiotemporal characteristics and driving mechanisms of LULC changes offers valuable insights for the planning and sustainable management of LULC in the JRB.
文摘Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce the changes. The study aims to evaluate and quantify the historical changes in land use and land cover in Mukumbura (Ward 2), Mt Darwin, Zimbabwe, from 2002 to 2022. The objective of the study was to analyse the LULC changes in Ward 2 (Mukumbura), Mt Darwin, Northern Zimbabwe, for a period of 20 years using geospatial techniques. Landsat satellite images were processed using Google Earth Engine (GEE) and the supervised classification with maximum likelihood algorithm was employed to generate LULC maps between 2002 and 2022 with a five (5) year interval, investigating the following variables, forest cover, barren land, water cover and the fields. Findings revealed a substantial reduction in forest cover by 38.8%, water bodies (wetlands, ponds, and rivers) declined by 55.6%, whilst fields (crop/agricultural fields) increased by 93.3% and the barren land cover increased by 26.3% from 2002 to 2022. These findings point to substantial changes in LULC over the observed years. LULC changes have resulted in habitat fragmentation, reduced biodiversity, and the disruption of ecosystem functions. The study concludes that if these deforestation trends, cultivation, and settlement land expansion continue, the ward will have limited indigenous fruit trees. Therefore, the causes for LULC changes must be controlled, sustainable forest resources use practiced, hence the need to domesticate the indigenous fruit trees in arborloo toilets.
文摘The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.
基金supported by the Third Xinjiang Scientific Expedition Program (2022xjkk1100)the Tianchi Talent Project
文摘The Turpan-Hami(Tuha)Basin in Xinjiang Uygur Autonomous Region of China,holds significant strategic importance as a key economic artery of the ancient Silk Road and the Belt and Road Initiative,necessitating a holistic understanding of the spatiotemporal evolution of land use/land cover(LULC)to foster sustainable planning that is tailored to the region's unique resource endowments.However,existing LULC classification methods demonstrate inadequate accuracy,hindering effective regional planning.In this study,we established a two-level LULC classification system(8 primary types and 22 secondary types)for the Tuha Basin.By employing Landsat 5/7/8 imagery at 5-a intervals,we developed the LULC dataset of the Tuha Basin from 1990 to 2020,conducted the accuracy assessment and spatiotemporal evolution analysis,and simulated the future LULC under various scenarios via the Markov-Future Land Use Simulation(Markov-FLUS)model.The results revealed that the average overall accuracy values of our LULC dataset were 0.917 and 0.864 for the primary types and secondary types,respectively.Compared with the seven mainstream LULC products(GlobeLand30,Global 30-meter Land Cover with Fine Classification System(GLC_FCS30),Finer Resolution Observation and Monitoring of Global Land Cover PLUS(FROM_GLC PLUS),ESA Global Land Cover(ESA_LC),Esri Land Cover(ESRI_LC),China Multi-Period Land Use Land Cover Change Remote Sensing Monitoring Dataset(CNLUCC),and China Annual Land Cover Dataset(CLCD))in 2020,our LULC data exhibited dramatically elevated overall accuracy and provided more precise delineations for land features,thereby yielding high-quality data backups for land resource analyses within the basin.In 2020,unused land(78.0%of the study area)and grassland(18.6%)were the dominant LULC types of the basin;although cropland and construction land constituted less than 1.0%of the total area,they played a vital role in arid land development and primarily situated within oases that form the urban cores of the cities of Turpan and Hami.Between 1990 and 2020,cropland and construction land exhibited a rapid expansion,and the total area of water body decreased yet resurging after 2015 due to an increase in areas of reservoir and pond.In future scenario simulations,significant increases in areas of construction land and cropland are anticipated under the business-as-usual scenario,whereas the wetland area will decrease,suggesting the need for ecological attention under this development pathway.In contrast,the economic development scenario underscores the fast-paced expansion of construction land,primarily from the conversion of unused land,highlighting the significant developmental potential of unused land with a slowing increase in cropland.Special attention should thus be directed toward ecological and cropland protection during development.This study provides data supports and policy recommendations for the sustainable development goals of Tuha Basin and other similar arid areas.
基金the University Grants Commission,New Delhi,India,for providing financial support in the form of the Junior Research Fellowship。
文摘Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land cover(LULC)changes on LST and determined the intensity of urban heat island(UHI)in New Town Kolkata(a smart city),eastern India,from 1991 to 2021 at 10-a intervals using various series of Landsat multi-spectral and thermal bands.This study used the maximum likelihood algorithm for image classification and other methods like the correlation analysis and hotspot analysis(Getis–Ord Gi^(*) method)to examine the impact of LULC changes on urban thermal environment.This study noticed that the area percentage of built-up land increased rapidly from 21.91%to 45.63%during 1991–2021,with a maximum positive change in built-up land and a maximum negative change in sparse vegetation.The mean temperature significantly increased during the study period(1991–2021),from 16.31℃to 22.48℃in winter,29.18℃to 34.61℃in summer,and 19.18℃to 27.11℃in autumn.The result showed that impervious surfaces contribute to higher LST,whereas vegetation helps decrease it.Poor ecological status has been found in built-up land,and excellent ecological status has been found in vegetation and water body.The hot spot and cold spot areas shifted their locations every decade due to random LULC changes.Even after New Town Kolkata became a smart city,high LST has been observed.Overall,this study indicated that urbanization and changes in LULC patterns can influence the urban thermal environment,and appropriate planning is needed to reduce LST.This study can help policy-makers create sustainable smart cities.
基金Science and Technology Research Program of Xiamen Customs(2020XK08).
文摘Based on the biological characteristics of Solenopsis invicta and the structural characteristics of its ant nest,a fast and efficient closed treatment device was developed.Compared with the simple chemical treatment commonly used at present,the developed treatment device(the ant nest control cover)is a fast and efficient method to exterminate S.invicta in 7 d,featured by short course,quick results and good effect.
基金supported by the Tianshan Talent Training Plan of Xinjiang,China(2022TSYCLJ0058,2022TSYCCX0001)the National Natural Science Foundation of China(2022D01D83,42377358).
文摘The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are extremely fragile and sensitive to external environmental changes.Land use and land cover(LULC)changes significantly impact soil structure and function,thus affecting the soil multifunctionality(SMF).However,the effect of LULC changes on the SMF in the drylands of China has rarely been reported.In this study,we investigated the characteristics of the SMF changes based on soil data in the 1980s from the National Tibetan Plateau Data Center.We explored the drivers of the SMF changes under different LULC types(including forest,grassland,shrubland,and desert)and used structural equation modeling to explore the main driver of the SMF changes.The results showed that the SMF under the four LULC types decreased in the following descending order:forest,grassland,shrubland,and desert.The main driver of the SMF changes under different LULC types was mean annual temperature(MAT).In addition to MAT,pH in forest,soil moisture(SM)and soil biodiversity index in grassland,SM in shrubland,and aridity index in desert are crucial factors for the SMF changes.Therefore,the SMF in the drylands of China is regulated mainly by MAT and pH,and comprehensive assessments of the SMF in drylands need to be performed regarding LULC changes.The results are beneficial for evaluating the SMF among different LULC types and predicting the SMF under global climate change.
文摘Information on the dynamics of savannah is important to a country's plan to overcome the problems of uncontrolled development and environmental hazards. Taking the reserve partielle de Dosso, Niger as the case study area, this paper analyzed the long-term land use land cover change from 2002 to 2022. Satellite images were processed by using Google Earth Engine (GEE). Therefore, four major land cover classes were identified based on spectral characteristics of Land sat, namely, built-up, vegetation, cropland, bare land and water. The result revealed that barren and built-up areas increased at the expense of vegetation and water. From the four major land use land cover the large area is covered by vegetation which comprises about 192963.5 hectares followed by cropland and water consisting of 32506.43 and 1596.4 hectares respectively. The built-up area gained substantial area (most) during the study period. The reduction in some of the land cover/uses underlines the dangerous trend of the pressure poised by population growth and the changing functionality. Land cover change is influenced by a variety of societal factors operating on several spatial and temporal levels. The area estimates and spatial distributions of the LULC classes produced from the current study will assist local authorities, managers, and other stakeholders in decision-making and planning regarding forest land cover and uses.